Cho\(\frac{7x+5y}{3x-7y}=\frac{7z+5t}{3z-7t}CMR:\frac{x}{y}=\frac{z}{t}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Theo hệ thức viét ta có :
Vì x1=1 và x2=-1 là 2 nghiệm của pt : f(x)=ax^2+bx+c nên :
\(x_1.x_2=\frac{c}{a}=-1\cdot1=-1\) => \(a=-c\)
Vậy a và c là 2 số đối nhau
b, Ta có : f(x-1)=a(x-1)^2+b(x-1)+c
=> \(f\left(x\right)-f\left(x-1\right)=ax^2+bx+c-\left[a\left(x-1\right)^2+b\left(x-1\right)+c\right]\)
\(=2ax+a+b\)
Mặt khác : f(x)-f(x-1)=x nên : \(2ax+a+b=x\)
<=> \(x\left(2a-1\right)+a+b=0\)
Do \(a\ne0\) ( đk của pt bậc 2 ) nên a=1/2 và a+b=0 ( nghiệm thoả mãn )
=> \(f\left(x\right)=\frac{1}{2}x^2-\frac{1}{2}x+c\)
Áp dụng kết quả trên ta có : \(f\left(1\right)-f\left(0\right)=1\)
............
\(f\left(n\right)-f\left(n-1\right)=n\)
=> \(1+2+3+...+n=f\left(1\right)-f\left(0\right)+f\left(2\right)-f\left(1\right)+...+f\left(n\right)-f\left(n-1\right)\)
\(=f\left(n\right)-f\left(0\right)=\frac{1}{2}n^2-\frac{1}{2}n+c-\left(0\cdot a+0\cdot b+c\right)=\frac{1}{2}n^2-\frac{1}{2}n\)
\(\frac{7x+5y}{3x-7y}=\frac{7z+5t}{3z-7t}=>\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}\)
=>\(\frac{7x}{7z}=\frac{5y}{5t}=\frac{3x}{3z}=\frac{7y}{7t}\)(t/c ngược của t/c dãy tỉ số bằng nhau)
=>\(\frac{x}{z}=\frac{y}{t}=\frac{x}{z}=\frac{y}{t}\)
TỪ \(\frac{x}{z}=\frac{y}{t}=>\frac{x}{y}=\frac{z}{t}\)(ĐPCM)
\(\frac{7x+5y}{3x-7y}=\frac{7z+5t}{3z-7t}\Rightarrow\left(7x+5y\right)\left(3z-7t\right)=\left(7z+5t\right)\left(3x-7y\right)\)
\(\Leftrightarrow21xz-49xt+15yz-35yt=21xz-49yz+15xt-35yt\)
\(\Leftrightarrow-49xt+15yz=-49yz+15xt\Leftrightarrow-64xt=-64yz\Leftrightarrow xt=yz\Leftrightarrow\frac{x}{y}=\frac{z}{t}\)
Vậy ta có đpcm
Ta có: \(\frac{7x+5y}{3x-7y}=\frac{7z+5t}{3z-7t}\)
\(\Rightarrow\) \(\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}\)
+) \(\left[{}\begin{matrix}\frac{7x+5y}{7z+5t}=\frac{7x}{7z}=\frac{5y}{5t}=\frac{x}{z}=\frac{y}{t}\Rightarrow\frac{x}{y}=\frac{z}{t}\\\frac{3x-7y}{3z-7t}=\frac{3x}{3z}=\frac{7y}{7t}=\frac{x}{z}=\frac{y}{t}\Rightarrow\frac{x}{y}=\frac{z}{t}\end{matrix}\right.\)
\(\Rightarrow\frac{x}{y}=\frac{z}{t}\)
Vậy từ \(\frac{7x+5y}{3x-7y}=\frac{7z+5t}{3z-7t}\)\(\Rightarrow\frac{x}{y}=\frac{z}{t}\)
Tớ không biết trình bày có đúng không. Chúc bạn học tốt
Lời giải:
$\frac{7x+5y}{3x-5y}=\frac{7z+5t}{3z-5t}$
$\Rightarrow (7x+5y)(3z-5t)=(7z+5t)(3x-5y)$
$\Rightarrow 21xz-35xt+15yz-25yt = 21xz-35yz+15xt-25yt$
$\Rightarrow -35xt+15yz=-35yz+15xt$
$\Rightarrow -50xt=-50yz$
$\Rightarrow xt=yz\Rightarrow \frac{x}{y}=\frac{z}{t}$
Bài 1:
Giải:
Ta có: \(\frac{x}{y}=\frac{3}{2}\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)
\(5x=7z\Rightarrow\frac{x}{7}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{15}=\frac{2y}{28}=\frac{x-2y+z}{21-28+15}=\frac{32}{8}=4\)
+) \(\frac{x}{21}=4\Rightarrow x=84\)
+) \(\frac{y}{14}=4\Rightarrow y=56\)
+) \(\frac{z}{15}=4\Rightarrow z=60\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(84;56;60\right)\)
Bài 2:
Giải:
Ta có: \(\frac{7x+5y}{3x-7y}=\frac{7z+5t}{3z-7t}\Rightarrow\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}=\frac{7x}{7z}=\frac{5y}{5t}=\frac{3x}{3z}=\frac{7y}{7t}=\frac{x}{z}=\frac{y}{t}=\frac{x}{z}=\frac{y}{t}\)
\(\frac{x}{z}=\frac{y}{t}\Rightarrow\frac{x}{y}=\frac{z}{t}\)
\(\Rightarrowđpcm\)
BÀI 1 LÀ áp dụng tính chất của dãy tỉ sỗ = nhau
BT2 là cũng vậy r ss
\(\frac{7x+5y}{3x-7y}=\frac{7z+5t}{3z-7t}\Rightarrow\left(7x+5y\right)\left(3z-7t\right)=\left(7z+5t\right)\left(3x-7y\right)\)
\(\Leftrightarrow21xz+15yz-49tx-35ty=21xz+15tx-49yz-35ty\)
\(\Leftrightarrow21xz-21xz+15yz+49yz-49tx-15tx-35ty+35ty=0\)
\(\Leftrightarrow64yz-64tx=0\)
\(\Leftrightarrow yz=tx\)
\(\Leftrightarrow\frac{x}{y}=\frac{z}{t}\)