\(\dfrac{7x+5y}{3x-7y}=\dfrac{7z+5t}{3z-7t}\) . CMR : \(\dfrac{x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2019

Ta có: \(\frac{7x+5y}{3x-7y}=\frac{7z+5t}{3z-7t}\)

\(\Rightarrow\) \(\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}\)

+) \(\left[{}\begin{matrix}\frac{7x+5y}{7z+5t}=\frac{7x}{7z}=\frac{5y}{5t}=\frac{x}{z}=\frac{y}{t}\Rightarrow\frac{x}{y}=\frac{z}{t}\\\frac{3x-7y}{3z-7t}=\frac{3x}{3z}=\frac{7y}{7t}=\frac{x}{z}=\frac{y}{t}\Rightarrow\frac{x}{y}=\frac{z}{t}\end{matrix}\right.\)

\(\Rightarrow\frac{x}{y}=\frac{z}{t}\)

Vậy từ \(\frac{7x+5y}{3x-7y}=\frac{7z+5t}{3z-7t}\)\(\Rightarrow\frac{x}{y}=\frac{z}{t}\)

Tớ không biết trình bày có đúng không. Chúc bạn học tốt hehe

3 tháng 4 2016

\(\frac{7x+5y}{3x-7y}=\frac{7z+5t}{3z-7t}\Rightarrow\left(7x+5y\right)\left(3z-7t\right)=\left(7z+5t\right)\left(3x-7y\right)\)

\(\Leftrightarrow21xz+15yz-49tx-35ty=21xz+15tx-49yz-35ty\)

\(\Leftrightarrow21xz-21xz+15yz+49yz-49tx-15tx-35ty+35ty=0\)

\(\Leftrightarrow64yz-64tx=0\)

\(\Leftrightarrow yz=tx\)

\(\Leftrightarrow\frac{x}{y}=\frac{z}{t}\)

AH
Akai Haruma
Giáo viên
30 tháng 12 2023

Lời giải:

$\frac{7x+5y}{3x-5y}=\frac{7z+5t}{3z-5t}$

$\Rightarrow (7x+5y)(3z-5t)=(7z+5t)(3x-5y)$

$\Rightarrow 21xz-35xt+15yz-25yt = 21xz-35yz+15xt-25yt$

$\Rightarrow -35xt+15yz=-35yz+15xt$

$\Rightarrow -50xt=-50yz$

$\Rightarrow xt=yz\Rightarrow \frac{x}{y}=\frac{z}{t}$

AH
Akai Haruma
Giáo viên
25 tháng 3 2018

Lời giải:

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{3x-5y}{2}=\frac{7y-3z}{3}=\frac{5z-7x}{4}\)

\(\Leftrightarrow \frac{7(3x-5y)}{14}=\frac{5(7y-3z)}{15}=\frac{3(5z-7x)}{12}=\frac{7(3x-5y)+5(7y-3z)+3(5z-7x)}{14+15+12}=0\)

\(\Rightarrow \left\{\begin{matrix} 3x-5y=0\\ 7y-3z=0\\ 5z-7x=0\end{matrix}\right.\)

\(\Leftrightarrow \frac{x}{5}=\frac{y}{3}=\frac{z}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{5}=\frac{y}{3}=\frac{z}{7}=\frac{x+y+z}{5+3+7}=\frac{17}{15}\)

\(\Rightarrow \left\{\begin{matrix} x=\frac{17}{3}\\ y=\frac{17}{5}\\ z=\frac{119}{15}\end{matrix}\right.\)

Tau méc cô mi đi hỏi hiha

27 tháng 2 2017

\(\dfrac{3x-5y}{2}=\dfrac{7y-3z}{3}=\dfrac{5z-7x}{4}=\dfrac{21x-35y}{14}=\dfrac{35y-15z}{15}=\dfrac{15z-21x}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{3x-5y}{2}=\dfrac{7y-3z}{3}=\dfrac{5z-7x}{4}=\dfrac{21x-35y}{14}=\dfrac{35y-15z}{15}=\dfrac{15z-21x}{12}=\dfrac{21x-35y+35y-15z+15z-21x}{14+15+12}=\dfrac{0}{41}=0\)

=>3x-5y=7y-3z=5z-7x=0

3x-5y=0 <=> 3x=5y <=> \(\dfrac{x}{5}=\dfrac{y}{3}\) (1)

7y-3z=0 <=> 7y=3z <=> \(\dfrac{y}{3}=\dfrac{z}{7}\) (2)

Từ (1) và (2) suy ra \(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau: \(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{7}=\dfrac{x+y+z}{5+3+7}=\dfrac{17}{15}\)

=>\(x=\dfrac{17}{15}.5=\dfrac{17}{3};y=\dfrac{17}{15}.3=\dfrac{17}{5};z=\dfrac{17}{15}.7=\dfrac{119}{15}\)

Vậy ...........

5 tháng 10 2015

\(\frac{7x+5y}{3x-7y}=\frac{7z+5t}{3z-7t}=>\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}\)

=>\(\frac{7x}{7z}=\frac{5y}{5t}=\frac{3x}{3z}=\frac{7y}{7t}\)(t/c ngược của t/c dãy tỉ số bằng nhau)

=>\(\frac{x}{z}=\frac{y}{t}=\frac{x}{z}=\frac{y}{t}\)

 TỪ \(\frac{x}{z}=\frac{y}{t}=>\frac{x}{y}=\frac{z}{t}\)(ĐPCM)

15 tháng 1 2017

alexander sky sơn tùng mặt toàn phân

AH
Akai Haruma
Giáo viên
12 tháng 12 2017

Lời giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{3x-5y}{2}=\frac{7y-3z}{3}=\frac{5z-7x}{4}\)

\(\Leftrightarrow \frac{7(3x-5y)}{14}=\frac{5(7y-3z)}{15}=\frac{3(5z-7x)}{12}=\frac{7(3x-5y)+5(7y-3z)+3(5z-7x)}{14+15+12}=0\)

Suy ra:

\(\left\{\begin{matrix} 3x=5y\\ 7y=3z\\ 5z=7x\end{matrix}\right.\Leftrightarrow 21x=35y=15z\)

\(\Leftrightarrow \frac{x}{\frac{1}{21}}=\frac{y}{\frac{1}{35}}=\frac{z}{\frac{1}{15}}=\frac{x+y+z}{\frac{1}{21}+\frac{1}{35}+\frac{1}{15}}=119\) (ADTCDTSBN)

\(\Rightarrow \left\{\begin{matrix} x=\frac{17}{3}\\ y=\frac{17}{5}\\ z=\frac{119}{15}\end{matrix}\right.\)

17 tháng 8 2018

mình nghĩ bạn chép sai đề bài

dấu ''='' thứ 2 thay bằng dấu ''+''

ta có

\(\dfrac{19}{x+y}+\dfrac{19}{y+z}+\dfrac{19}{x+z}=\dfrac{133}{10}\)

\(\Rightarrow19\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}\right)=\dfrac{133}{10}\)

\(\Rightarrow\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}=\dfrac{7}{10}\)

lại có

\(\dfrac{7x}{y+z}+\dfrac{7y}{x+z}+\dfrac{7z}{x+y}=\dfrac{133}{10}\)

\(\Rightarrow7\left(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\right)=\dfrac{133}{10}\)

\(\Rightarrow\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}=\dfrac{19}{10}\)

\(\Rightarrow\dfrac{x+y+z}{y+z}+\dfrac{x+y+z}{x+z}+\dfrac{x+y+z}{x+y}=\dfrac{49}{10}\)

\(\Rightarrow\left(x+y+z\right)\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)=\dfrac{49}{10}\)

\(\Rightarrow\dfrac{7}{10}\left(x+y+z\right)=\dfrac{49}{10}\Rightarrow\left(x+y+z\right)^2=49.\)