Giai phương trình:
x^2/x-1 = x/x-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^5+x^4+x^3+x^2+x=0\)
⇔\(\left(x^5+x^4\right)+\left(x^3+x^2\right)+\left(x+1\right)=0\)
⇔\(x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)=0\)
⇔\(\left(x+1\right)\left(x^4+x^2+1\right)=0\)
⇔ \(\left[{}\begin{matrix}x+1=0\\x^4+x^2+1=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=-1\\x\in\varnothing\end{matrix}\right.\)
a: =>(x^2+x)^2-2(x^2+x)+(x^2+x)-2=0
=>(x^2+x-2)(x^2+x+1)=0
=>(x+2)(x-1)=0
=>x=-2 hoặc x=1
b: ĐKXĐ: x<>4; x<>1
PT =>\(\dfrac{x+3+3x-12}{x-4}=\dfrac{6}{1-x}\)
=>(4x-9)(1-x)=6(x-4)
=>4x-4x^2-9+9x=6x-24
=>-4x^2+13x-9-6x+24=0
=>-4x^2+7x+15=0
=>x=3(nhận) hoặc x=-5/4(nhận)
TA CÓ : \(x^4+\left(x^2+1\right)\sqrt{x^2+1}-1=0\)
ĐẶT \(\sqrt{x^2+1}=y\left(y>0\right)\)
\(\Rightarrow x^4=\left(y^2-1\right)^2\)
Từ Đó Ta Có pt mới : \(\left(y^2-1\right)^2+y^3-1=0\left(y>0\right)\)
\(\Rightarrow y^4+y^3-2y^2=0\)
\(\Rightarrow y^2\left(y^2+y-2\right)=0\)
\(\Rightarrow y^2\left(y-1\right)\left(y+2\right)=0\)
\(\Rightarrow y=1\left(y>0\Rightarrow y\notin\left(-2;0\right)\right)\)
\(\Rightarrow\sqrt{x^2+1}=1\Rightarrow x=0\)
VẬY PT trên có nghiệm duy nhất X = 0
Nhận thấy luôn trình luôn đúng \(\forall x\).
Vậy phương trình có vô số nghiệm.
\(x+\frac{2}{3}-2\ge2x+\frac{x}{2}\)
\(\Leftrightarrow6x-2\ge15x\)
\(\Leftrightarrow x\le-\frac{2}{9}\)
Vậy \(x\le-\frac{2}{9}\)
1: =>x^2+3x-4=0
=>(x+4)(x-1)=0
=>x=1 hoặc x=-4
2: =>2x-3y=1 và 3x=4y+2
=>2x-3y=1 và 3x-4y=2
=>x=2 và y=1
x2 + x + 1 = 0
x . (x + 1) = -1 = -1 . 1
Vì x < x + 1 nên x = -1 => x + 1 \(\ne\) 1
Vậy x không tồn tại
x2+x+1=0
=>x.(x+1)=0-1
=>x.(x+1)=-1
ta có bảng sau
x+1 | 1 | -1 |
x theo x+1 | 0 | -2 |
x | -1 | 1 |
vậy không có x
\(\frac{x^2}{x-1}=\frac{x}{x-1}\left(ĐKXĐ:x\ne1\right)\)
\(\Rightarrow x^2=x\)
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\left(TMĐKXĐ\right)\\x=1\left(KTMĐKXĐ\right)\end{cases}}\)\(\Leftrightarrow x=0\)(tm ; thỏa mãn; k : không)
Vậy phương trình có nghiệm duy nhất: x = 0
ĐKXĐ : x ≠ 1
từ pt => x2 = x
<=> x( x - 1 ) = 0
<=> x = 0 (tm) hoặc x = 1 (ktm)
Vậy x = 0