K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2016

2/3ma +2/3mb >c  ( Bất đẳng thức tam giác)

2/3ma+ 2/3c>  b

 2/3mb +2/3mc > a

=> 4/3 ( ma +mb + mc) > a+b+c 

31 tháng 3 2020

NHÀ NHIỀU LƯỚI LẮM NHỈ

9 tháng 4 2022

-Áp dụng BĐT trong tam giác ta có:

\(AG+BG>AB;BG+CG>BC;CG+AG>CA\)

-Cộng các vế với nhau ta được:

\(2\left(AG+BG+CG\right)>AB+AC+BC\)

\(\Rightarrow2.\dfrac{2}{3}\left(AE+BF+CD\right)>AB+AC+BC\)

\(\Rightarrow AE+BF+CD>\dfrac{3}{4}AB+AC+BC\)

 

 

 

 

 

1 tháng 9 2023

Để chứng minh rằng ama + bmb + cmc ≥ √32, ta sử dụng bất đẳng thức tam giác. Bất đẳng thức tam giác cho biết rằng tổng độ dài của ba đường trung tuyến của một tam giác luôn lớn hơn hoặc bằng bình phương độ dài cạnh tương ứng. Vì vậy, ta có:

ama + bmb + cmc ≥ (ma + mb + mc)²/3

Theo định lý đường trung tuyến, ta biết rằng ma + mb + mc = 3/2(a + b + c). Thay vào biểu thức trên, ta có:

ama + bmb + cmc ≥ (3/2(a + b + c))²/3

Simplifying the expression, we get:

ama + bmb + cmc ≥ 3/4(a + b + c)²

Để chứng minh rằng ama + bmb + cmc ≥ √32, ta cần chứng minh rằng 3/4(a + b + c)² ≥ √32. Tuy nhiên, để chứng minh điều này, cần thêm thông tin về giá trị của a, b, c.

2 tháng 7

                                                                         Nguyễn Văn A                                                                                                         

a: Xet ΔAHB và ΔAHC có

AH chung

HB=HC

AB=AC
=>ΔAHB=ΔAHC

b: Xét ΔNBC và ΔMCB có

NB=MC
góc NBC=góc MCB

CB chung

=>ΔNBC=ΔMCB

=>góc GBC=góc GCB

=>ΔGCB cân tại G

c: góc ECG+góc BCG=90 độ

góc GBC+góc GEC=90 độ

mà góc BCG=góc GBC

nên góc ECG=góc GEC
=>GC=GE=GB

=>G là trung điểm của BE
Xét ΔEBC có GD//CB

nên GD/CB=EG/EB=1/2

=>CB=2GD

29 tháng 6 2019

a) Ta có:

Giải bài 6 trang 59 sgk Hình học 10 | Để học tốt Toán 10

Vậy tam giác ABC có góc C tù.

b) Ta có:

Giải bài 6 trang 59 sgk Hình học 10 | Để học tốt Toán 10