Tim x biet : \(x-2\sqrt{x}=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-2\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\\sqrt{x}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy x=0 hoặc x=4 là giá trị cần tìm
Tim x biet
a)\(\left(2\sqrt{x}-3\right).\left(2+\sqrt{x}\right)+6=0\)
b)\(\sqrt{x^2-9}-3\sqrt{x-3}=0\)
a) \(\left(2\sqrt{x}-3\right)\left(2+\sqrt{x}\right)+6=0\left(ĐK:x\ge0\right)\)
\(\Leftrightarrow4\sqrt{x}+2x-6-3\sqrt{x}+6=0\)
\(\Leftrightarrow2x+\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}=0\\2\sqrt{x}+1=0\left(loại\right)\end{array}\right.\)\(\Leftrightarrow x=0\)
b)\(\sqrt{x^2-9}-3\sqrt{x-3}=0\left(ĐK:x\ge3\right)\)
\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x-3}=0\\\sqrt{x+3}-3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\left(tm\right)\\x=6\left(tm\right)\end{array}\right.\)
Bài này chỉ yêu cầu tìm x thôi đúng ko bạn .
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y-\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
\(\Rightarrow\hept{\begin{cases}x-\sqrt{2}=0\\y-\sqrt{2}=0\\x+y+z=0\end{cases}\Rightarrow x=\sqrt{2}}\)
ĐKXĐ: \(x\ge0\)
Đặt \(\sqrt{x}=a\)
\(\Rightarrow a^2-2a-1=0\)
\(\Rightarrow\left(a-1\right)^2=2\)
\(\Rightarrow\orbr{\begin{cases}a-1=\sqrt{2}\\a-1=-\sqrt{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}a=\sqrt{2}+1\\a=-\sqrt{2}+1\end{cases}\Leftrightarrow}\orbr{\begin{cases}\sqrt{x}=\sqrt{2}+1\\\sqrt{x}=-\sqrt{2}+1< 0\left(v\text{ô}l\text{ý}\right)\end{cases}}}\Leftrightarrow x=\left(\sqrt{2}+1\right)^2=3+2.\sqrt{2}\)Vậy \(x=3+2.\sqrt{2}\)
P/S: Không chắc lắm
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(x-\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
\(\Rightarrow\hept{\begin{cases}x-\sqrt{2}=0\\x+y+z=0\end{cases}\Rightarrow\hept{\begin{cases}x=\sqrt{2}\\x+y=-z\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=\sqrt{2}\\x=-z-y\end{cases}}\)
Đặt: \(\sqrt{x}=a\)
\(Taco:a^2-8a-9=0\Leftrightarrow a\left(a-8\right)-9=0\Leftrightarrow a\left(a-8\right)=9=1.9\)
\(\Leftrightarrow a=9\Leftrightarrow x=9^2=81\)
\(x-8\sqrt{x}-9=0\)
\(\Leftrightarrow\left(\sqrt{x}-9\right)\left(\sqrt{x}+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=9\Leftrightarrow x=81\\\sqrt{x}=-1\left(loại\right)\end{cases}}\)
Vậy x = 81
Ta có : \(\sqrt{x^2=x}\)
Thay vào phép toán , ta có :
\(x\cdot\left|x+2\right|=x\)
⇔\(\left|x+2\right|=1\)
\(\Rightarrow\left\{{}\begin{matrix}x+2=1\\x+2=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
⇒\(x\in\left\{-1;-3\right\}\)
Vay ............
Mình làm đại nếu ai thấy đúng thì k
\(x-2\sqrt{x}=0\)
\(\Rightarrow x-2\) hoặc \(x=0\)
x-2=0
=> x=2
Vậy x = 0 hoặc x = 2 là kết quả cần tìm
Bằng 0