chứng minh X mũ 2+1=0 :>
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-22x^3-\left(-21x^3+19x^2+23^0\right)-\left(-x^3-18x^2\right)+\left(x^2-23^1\right)\)
\(=-22x^3+21x^3-19x^2-1+x^3+18x^2+x^2-23\)
\(=\left(-22x^3+21x^3+x^3\right)+\left(-19x^2+18x^2+x^2\right)+\left(-1-23\right)\)
\(=0x^3+0x^2-24\)
\(=-24\)
Vậy biểu thức trên có giá trị không phụ thuộc vào biến.
a )
Ta co S = ( 2 + 22 + 23 + 24 + 25 ) + ...... + ( 296 + 297 + 298 +299 + 2100 )
= 2 ( 1 + 2 + 2.2 + 2.2.2 + 2.2.2.2 ) + .... + 296 ( 1 + 2 + 2.2 + 2.2.2 + 2.2.2.2 )
= 2.31 + .....+ 296.31
= 31 ( 2 + ... + 296 ) chia het cho 31
b ) Goi d laf UC ( 3n+1 ; 4n+1 )
=> 3n + 1 ⋮ d va 4n + 1 ⋮ d
=> 4(3n + 1)⋮ d va3(4n +1) ⋮ d
=> 12n + 4 ⋮ d và 12n + 3 ⋮ d
=> ( 12n + 4 ) - ( 12n + 3 ) ⋮ d
=> 1 ⋮ d => d = 1
Vi ƯC ( 3N+1;4N+1 ) = 1 => 3N+1;4N+1 là nguyên tố cùng nhau
c ) Xét x > 0
=> |x| + x = x+x = 2x = 0 => x = 0 ( loại )
Xét x < 0
=> |x| + x = - x + x = 0 ( tm)
Vậy x < 0
Lời giải :
1. \(\left(\frac{1}{2}a+b\right)^3+\left(\frac{1}{2}a-b\right)^3\)
\(=\frac{a^3}{8}+\frac{3a^2b}{4}+\frac{3ab^2}{2}+b^3+\frac{a^3}{8}-\frac{3a^2b}{4}+\frac{3ab^2}{2}-b^3\)
\(=\frac{a^3}{4}+3ab^2\)
Lời giải :
2. \(x^3-3x^2+3x-1=0\)
\(\Leftrightarrow\left(x-1\right)^3=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy...
1) \(\left(\frac{1}{2}a+b\right)^3+\left(\frac{1}{2}a-b\right)^3\)
\(=\left(\frac{a}{2}+b\right)^2+\left(\frac{a}{2}-b\right)^2\)
\(=\left(\frac{a}{2}+b\right)\left[\left(\frac{a}{2}\right)^2+2.\frac{a}{b}b+b^2\right]+\left(\frac{a}{2}-b\right)\left[\left(\frac{a}{2}\right)^2-2.\frac{a}{2}b+b^2\right]\)
\(=\frac{a}{2}\left[\left(\frac{a}{2}\right)^2+2.\frac{a}{2}b+b^2\right]+b\left[\left(\frac{a}{2}\right)^2+2.\frac{a}{2}b+b^2\right]+\frac{a}{2}\left[\left(\frac{a}{2}\right)^2-2.\frac{a}{2}b+b^2\right]\)\(-b\left[\left(\frac{a}{2}\right)^2-2.\frac{a}{2}b+b^2\right]\)
\(=\frac{a^3}{8}+\frac{a^2b}{2}+\frac{ab^2}{2}+\frac{ba^2}{4}+b^2a+b^3+\frac{a^3}{8}-\frac{a^2b}{2}+\frac{ab^2}{2}-\frac{ba^2}{4}+b^2a-b^3\)
\(=\frac{a^3}{4}+3ab^2\)
2) \(x^3-3x^2+3x-1=0\)
\(\Leftrightarrow x^3-3x^2.1+3.x.1^2-1^3=0\)
\(\Leftrightarrow\left(x+1\right)^3=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=0-1\)
\(\Rightarrow x=-1\)
3) \(A=\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)
\(A=64x^3-32x^2+4x-16x^2+8x-1-64x^3-12x+48x^2+9\)
\(A=8\)
Vậy: biểu thức không phụ thuộc vào biến
1) \(\left(x+5\right)^3-x^3-125\)
\(=\left(x+5\right)\left(x^2+2x.5+5^2\right)-x^3-125\)
\(=x\left(x^2+2x.5+5^2\right)+5\left(x^2+2x.5+5^2\right)-x^3-125\)
\(=x^3+10x^2+25x+5x^2+50x+125-x^3-125\)
\(=15x^2+75x\)
2) \(\left(x-2\right)^3+6\left(x+1\right)^2-x^3+12=0\)
\(\Leftrightarrow x^3-4x^2+4x-2x^2+8x-8+6x^2+12x+6-x^3+12=0\)
\(\Leftrightarrow24x+10=0\)
\(\Leftrightarrow24x=0-10\)
\(\Leftrightarrow24x=-10\)
\(\Leftrightarrow x=-\frac{10}{24}=-\frac{5}{12}\)
\(\Rightarrow x=-\frac{5}{12}\)
3) \(\left(x-1\right)^3-x^3+3x^2-3x+1\)
\(=\left(x-1\right)\left(x^2-2x+1\right)-x^3+3x^2-3x+1\)
\(=x\left(x^2-2x+1\right)-\left(x^2-2x+1\right)-x^3+3x^2-3x+1\)
\(=x^3-2x^2+x-x^2+2x-1-x^3-3x^2-3x+1\)
\(=0\)
Vậy: biểu thức không phụ thuộc vào biến
A = 20 + 21 + 22 + ... + 2100
A = (20 + 21) + (22 + 23) + ...+ ( 299 + 2100)
A = (20 + 21) + 22 . (20 + 21) + ... + 299 . ( 20 + 21)
A = (20 + 21) . (20 + 22 + ... + 299)
A = 3 . (20 + 22 + ... + 299)
Vì 3 chia hết cho 3 nên 3 . (20 + 22 + ... + 299) chia hết cho 3.
=> A chia hết cho 3.
X2+1 = 0
X3 = 0
X x X x X = 0
3 số giống hệt nhau nhân lại mà bằng 0 thì số đó chỉ có thể là 0
X = 0
/HT\