K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ACHE có 

EH//AC

EH=AC

Do đó: ACHE là hình bình hành

b: Xét tứ giác AHBE có 

AE//BH(vì AE//CH)

AE=BH(=CH)

Do đó: AHBE là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AHBE là hình chữ nhật

a: Xét tứ giác ACHE có 

HE//AC

HE=AC

Do đó: ACHE là hình bình hành

b: Ta có: ACHE là hình bình hành

nên AE//HC và AE=HC

=>AE//HB và AE=HB

Xét tứ giác AEBH có

AE//BH

AE=BH

Do đó: AEBH là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AEBH là hình chữ nhật

30 tháng 10 2023

a:

AB\(\perp\)AC

AB//CD

Do đó: CA\(\perp\)CD

Xét ΔABI vuông tại A và ΔCDI vuông tại C có

IA=IC

\(\widehat{AIB}=\widehat{CID}\)

Do đó:ΔABI=ΔCDI

=>AB=CD và IB=ID

Xét tứ giác ABCD có

AB//CD

AB=CD

Do đó: ABCD là hình bình hành

b: HK\(\perp\)AB

AC\(\perp\)AB

Do đó: HK//AC

Xét tứ giác AHKI có

AH//KI

AI//HK

Do đó: AHKI là hình bình hành

mà \(\widehat{IAH}=90^0\)

nên AHKI là hình chữ nhật

=>AK=HI

 

a: góc DFB=góc ACB

góc DBF=góc ACB 

=>góc DFB=góc DBF

=>ΔDBF cân tại D

b: Xét tứ giác DCEF có

DF//CE

DF=CE

=>DCEF là hình bình hành

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC

Xét tứ giác BDNC có 

DN//BC

BD//NC

Do đó: BDNC là hình bình hành

b: Xét tứ giác BDNH có BH//DN

nên BDNH là hình thang

29 tháng 10 2021

a: Ta có: ΔABC cân tại A

mà AQ là đường cao ứng với cạnh đáy BC

nên Q là trung điểm của BC

Xét tứ giác BHCK có 

Q là trung điểm của BC

Q là trung điểm của HK

Do đó: BHCK là hình bình hành

30 tháng 11 2015

Xét tam giác KAD và HDB có:

DA=DB

^B=^ADK(đồng vị)

^DAK=^BDH(đvị)

=>∆KAD=∆HDB(g.c.g)

=>KA=DH

Mà KA//DH(gt)

=>ADHK là hbh (3)

Xét ∆HAB có:

DA=DB(cmt )=> DH là đường trung tuyến

^AHB=90(gt)

=>DH=1/2AB =>DA=DA (4)

Từ (3) và (4) =>ADHK là hình thoi

29 tháng 11 2015

a) xét tứ giác ADME có

^A=^ADM=^AEM=90 (gt)

=>ADME là hcn

b)Xét tam giác ABC có:

MB=MC(gt)

ME//AB(ADME là hcn.cmt)

=>EA=EC=>EC=1/2AC  (1)

Lại có: MD//AC (ADME là hcn.cmt)

=>DA=DB

=>DM là đường trung bình=>DM=1/2AC  (2)

Từ (1) và (2)=>DM=EC

mà DM//AE(E thuộc AC)

=>MDEC là hbh

c) Nối H với E

Xét tam giác HAC có:

EA=EC(cmt)=>HE là đường trung tuyến

^AHC=90(gt)

=>HE=1/2AC

mà DM=1/2AC(cmt)

=>HE=DM

=>MHDE là htc.