Xét dấu các tam thức bậc hai
a) 5x2 _ 3x+ 1
b) x2+ 12x + 36
c) -2x2 +3x +5
d) (2x-3).(x+5)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(\Delta=2^2-4\cdot1\cdot1=0\)
Do đó: Tam thức này dương khi x khác -1; bằng 0 khi x=-1
a: \(\Delta=3^2-4\cdot\left(-5\right)\cdot\left(-1\right)=9-20=-11< 0\)
Do đó: Tam thức này luôn âm với mọi x
c: \(\Delta=1^2-4\cdot1\cdot\left(-2\right)=9\)
Do đó: Tam thức này âm khi -2<x<1
Bằng 0 khi x=-2 hoặc x=1
Dương khi x<-2 hoặc x>1
a) \(f\left(x\right)=5x^2-3x+1\text{ có }\Delta=9-20=-11< 0\text{ và có Hsố là: }a=5>0\text{ nên }f\left(x\right)>0;\forall x\inℝ\)
b) \(f\left(x\right)=-2x^2+3x+5\text{ có }\Delta=9+40=49\)
Tam thức có hai nghiệm phân biệt: \(\orbr{\begin{cases}x_1=-1\\x_2=\frac{5}{2}\end{cases}}\)
Ta có bảng xét dấu:
x f(x) -∞ -1 5/2 +∞ - 0 + 0 -
\(\Rightarrow f\left(x\right)>0\Leftrightarrow x\in\left\{-1;\frac{5}{2}\right\}\)
\(f\left(x\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{2}\end{cases}}\)
\(f\left(x\right)< 0\Leftrightarrow x\in\left\{-\infty;-1\right\}\text{∪}\left\{\frac{5}{2};+\infty\right\}\)
c) \(f\left(x\right)=x^2+12x+36\text{ có }\Delta=0\Rightarrow\text{Nghiệm là: }-6\)
Ta có bảng xét dấu:
x f(x) -∞ -6 +∞ + 0 +
\(\Rightarrow f\left(x\right)>0\Leftrightarrow x\ne-6\)
\(f\left(x\right)=0\Leftrightarrow x=-6\)
Ta có thể phân tích như sau: \(f\left(x\right)=\left(x+6\right)^2\ge0;\forall x\inℝ\)
d) \(f\left(x\right)=\left(2x-3\right)\left(x+5\right)\text{ có hai nghiệm phân biệt: }\orbr{\begin{cases}x_1=\frac{3}{2}\\x_2=-5\end{cases}}\)
Ta có bảng xét dấu:
x -∞ -5 3/2 +∞ f(x) + 0 - 0 +
\(\Rightarrow f\left(x\right)>0\Leftrightarrow x\in\left\{-\infty;-5\right\}\text{∪}\left\{\frac{3}{2};+\infty\right\}\)
\(f\left(x\right)=0\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{3}{2}\end{cases}}\)
\(f\left(x\right)< 0\Leftrightarrow x\in\left\{-5;\frac{3}{2}\right\}\)
1: Sửa đề: 3x-5
\(=\dfrac{-x^2\left(3x-5\right)-3\left(3x-5\right)}{3x-5}=-x^2-3\)
2: \(=\dfrac{5x^4-5x^3+14x^3-14x^2+12x^2-12x+8x-8}{x-1}\)
=5x^2+14x^2+12x+8
3: \(=\dfrac{5x^3+10x^2+4x^2+8x+4x+8}{x+2}=5x^2+4x+4\)
4: \(=\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}=x^2+1-2x\)
5: \(=\dfrac{x^2\left(5-3x\right)+3\left(5-3x\right)}{5-3x}=x^2+3\)
b) \(16x-5x^2-3=5x\left(3-x\right)-\left(3-x\right)=\left(3-x\right)\left(5x-1\right)\)
c) \(2x^2+3x-5=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)
d) \(2x^2+3x-5=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)
am thức f(x) = –2x2 + 3x + 5 có Δ = 9 + 40 = 49 > 0.
Tam thức có hai nghiệm phân biệt x1 = –1; x2 = 5/2, hệ số a = –2 < 0
Ta có bảng xét dấu:
Vậy f(x) > 0 khi x ∈ (–1; 5/2)
f(x) = 0 khi x = –1 ; x = 5/2
f(x) < 0 khi x ∈ (–∞; –1) ∪ (5/2; +∞)
Bài 1:
a: \(\Leftrightarrow x^2-5x+6< =0\)
=>(x-2)(x-3)<=0
=>2<=x<=3
b: \(\Leftrightarrow\left(x-6\right)^2< =0\)
=>x=6
c: \(\Leftrightarrow x^2-2x+1>=0\)
\(\Leftrightarrow\left(x-1\right)^2>=0\)
hay \(x\in R\)
Tam thức f(x) = 5x2 – 3x + 1 có Δ = 9 – 20 = –11 < 0 nên f(x) cùng dấu với hệ số a.
Mà a = 5 > 0
Do đó f(x) > 0 với ∀ x ∈ R.
a)
\(\Delta=9-20=-11\) vô nghiêm
=> A luôn dương (+) với mọi x thuộc R
b) {a-b+c=0}
B= 0 khi x= -1 hoặc x= 5/2
B>0 khi -1<x<5/2
B<0 khi x<-1 hoặc x>/52
c) x^2 +12x+36 =(x+6)^2
C = 0 khi x =-6
C > 0 mọi x khác -6
d)
D = 0 khi x =3/2 hoặc x=-5
D> 0 khi x<-5 hoặc x>3/2
D<0 khi -5<x<3/2
\(\left(x-y\right)^2+4\left(x-y\right)+4\)
\(=\left(x-y\right)^2+2.\left(x-y\right).2+2^2\)
\(=\left(x-y+2\right)^2\)
hk tốt
^^