Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
a) Ta có : 2.x2 -2.x = 5.x
<=> 2.x2 -3.x-5=0 : a = 2 ; b = 3 ; c = -5
b) Ta có : x2 +2.x = m. x + m
<=> x2 + ( 2-m ) .x - m = 0 : a = 1 ; b=2-m ; c=-m
c) Ta có : 2.x2 \(+\sqrt{2}.\left(3.x-1\right)=1+\sqrt{2}\)
<=> 2.x2 + 3.\(\sqrt{2}.x-2.\sqrt{2}-1=0\): a = 2 ; b= 3\(\sqrt{2};c=-2\sqrt{2}-1\)
a) \(2x^2-2x=5+x\)
\(\Leftrightarrow2x^2-x-5=0\)với \(\hept{\begin{cases}a=2\\b=-3\\c=-5\end{cases}}\)
b) \(x^2+2x=mx+m\)
\(\Leftrightarrow x^2+\left(2-m\right)x-m=0\)với \(\hept{\begin{cases}z=1\\b=3-m\\c=-m\end{cases}}\)
c) \(2x^2+\sqrt{2}\left(3x-1\right)=1+\sqrt{2}\)
\(\Leftrightarrow2x^2+3\sqrt{2}\cdot x-2\sqrt{2}-1=0\)
với \(\hept{\begin{cases}a=2\\b=3\sqrt{2}\\c=-2\sqrt{2}-1\end{cases}}\)
a: x^2-7x+13=0
Δ=(-7)^2-4*1*13=49-52=-3<0
=>PTVN
b: -5x^2+5x-1.25=0
=>4x^2-4x+1=0
=>(2x-1)^2=0
=>2x-1=0
=>x=1/2
d: 2x^2+3x+1=0
=>(x+1)(2x+1)=0
=>x=-1 hoặc x=-1/2
a) Ta có:Δ =(-7)2 -4.2.2 =49 -16 =33 >0
Phương trình có 2 nghiệm phân biệt .Theo hệ thức Vi-ét, ta có:
x1 + x2 =-b/a =7/2 ;x1x2 =c/a =2/2 =1
b) c = -16 suy ra ac < 0
Phương trình có 2 ghiệm phân biệt .Theo hệ thức Vi-ét, ta có:
x1 + x2 =-b/a =-2/5 ;x1x2 =c/a =-16/5
c) Ta có: Δ’ = 22 – (2 -√3 )(2 + √2 ) =4 -4 - 2√2 +2√3 +√6
= 2√3 - 2√2 +√6 >0
Phương trình 2 ghiệm phân biệt .Theo hệ thức Vi-ét, ta có:
d) Ta có : Δ = (-3)2 -4.1,4.1,2 =9 – 6,72 =2,28 >0
Phương trình có 2 ghiệm phân biệt .Theo hệ thức Vi-ét, ta có:
x1 + x2 = -b/a = 3/(1.4) = 30/14 = 15/7 ; x1x2 = c/a = (1.2)/(1.4) = 12/14 = 6/7
Ta có: Δ = 12 -4.5.2 = 1 - 40 = -39 < 0
- ĐK \(x\ne0\Rightarrow\)\(\left(3x-1\right)\left(5-\frac{1}{2x}\right)=0\Leftrightarrow\orbr{\begin{cases}3x-1=0\\5-\frac{1}{2x}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=1\\10x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{3}\\x=\frac{1}{10}\end{cases}}}\)
- ĐK \(2x-1\ne0\Leftrightarrow x\ne\frac{1}{2}\)\(\frac{1}{4}+\frac{1}{3}:\left(2x-2\right)=5\Leftrightarrow\frac{1}{4}+\frac{1}{3\left(2x-1\right)}=5\)\(\Leftrightarrow3\left(2x-1\right)+4=4.3.5.\left(2x-1\right)\Leftrightarrow6x-3+4=120x-60\)\(\Leftrightarrow114x=61\Leftrightarrow x=\frac{61}{114}\)
- \(\left(2x+\frac{3}{5}\right)^2-\left(\frac{3}{5}\right)^2=0\Leftrightarrow\left(2x+\frac{3}{5}-\frac{3}{5}\right)\left(2x+\frac{3}{5}+\frac{3}{5}\right)=0\)\(2x\left(2x+\frac{6}{5}\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\2x=-\frac{6}{5}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\)
- \(3\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\Leftrightarrow3\left(3x-\frac{1}{2}\right)^3=-\frac{1}{9}\)\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=-\frac{1}{27}\Leftrightarrow3x-\frac{1}{2}=\sqrt[3]{-\frac{1}{27}}\)\(\Leftrightarrow3x-\frac{1}{2}=-\frac{1}{3}\Leftrightarrow3x=\frac{1}{6}\Leftrightarrow x=\frac{1}{18}\)
a) \(f\left(x\right)=5x^2-3x+1\text{ có }\Delta=9-20=-11< 0\text{ và có Hsố là: }a=5>0\text{ nên }f\left(x\right)>0;\forall x\inℝ\)
b) \(f\left(x\right)=-2x^2+3x+5\text{ có }\Delta=9+40=49\)
Tam thức có hai nghiệm phân biệt: \(\orbr{\begin{cases}x_1=-1\\x_2=\frac{5}{2}\end{cases}}\)
Ta có bảng xét dấu:
x f(x) -∞ -1 5/2 +∞ - 0 + 0 -
\(\Rightarrow f\left(x\right)>0\Leftrightarrow x\in\left\{-1;\frac{5}{2}\right\}\)
\(f\left(x\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{2}\end{cases}}\)
\(f\left(x\right)< 0\Leftrightarrow x\in\left\{-\infty;-1\right\}\text{∪}\left\{\frac{5}{2};+\infty\right\}\)
c) \(f\left(x\right)=x^2+12x+36\text{ có }\Delta=0\Rightarrow\text{Nghiệm là: }-6\)
Ta có bảng xét dấu:
x f(x) -∞ -6 +∞ + 0 +
\(\Rightarrow f\left(x\right)>0\Leftrightarrow x\ne-6\)
\(f\left(x\right)=0\Leftrightarrow x=-6\)
Ta có thể phân tích như sau: \(f\left(x\right)=\left(x+6\right)^2\ge0;\forall x\inℝ\)
d) \(f\left(x\right)=\left(2x-3\right)\left(x+5\right)\text{ có hai nghiệm phân biệt: }\orbr{\begin{cases}x_1=\frac{3}{2}\\x_2=-5\end{cases}}\)
Ta có bảng xét dấu:
x -∞ -5 3/2 +∞ f(x) + 0 - 0 +
\(\Rightarrow f\left(x\right)>0\Leftrightarrow x\in\left\{-\infty;-5\right\}\text{∪}\left\{\frac{3}{2};+\infty\right\}\)
\(f\left(x\right)=0\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{3}{2}\end{cases}}\)
\(f\left(x\right)< 0\Leftrightarrow x\in\left\{-5;\frac{3}{2}\right\}\)