cho tam giác ABC vuông tại A có AB = 10cm, AC = 20cm. Trên cạnh AC lấy điểm D sao cho AD = 5cm. Chứng minh góc ABD = góc ACB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
Suy ra:
Xét △ ADB và △ ABC, ta có:
+ Góc A chung
+ (chứng minh trên)
Suy ra: △ ADB đồng dạng △ ABC (c.g.c)
Vậy ∠ (ABD) = ∠ (ACB)
a: \(\widehat{ACB}=180^0-70^0-67^0=43^0\)
b: Xét ΔABD có AB=AD
nên ΔABD cân tại A
c: Xét ΔABE vuông tại E và ΔADF vuông tại F có
AB=AD
\(\widehat{BAE}\) chung
Do đó: ΔBAE=ΔDAF
d: Xét ΔABD có AF/AB=AE/AD
nên FE//BD
a: Xét ΔABC có BC^2=AB^2+AC^2
nên ΔABC vuông tại A
Xét ΔABD vuông tại D và ΔCAD vuông tại D có
góc DBA=góc DAC
=>ΔABD đồng dạng với ΔCAD
b: góc EAF+góc EDF=180 độ
=>AFDE nội tiếp
=>góc AFD+góc AED=180 độ
=>góc AFD=góc CED
a: Xét ΔBAD và ΔBMD có
BA=BM
góc ABD=góc MBD
BD chung
=>ΔBAD=ΔBMD
b: DA=DM
=>góc DAM=góc DMA
Xét tam giác ABD và tam giác ACB ta có ;
^BAD = ^BAC = 900
\(\frac{AB}{AC}=\frac{AD}{AB}=\frac{10}{20}=\frac{5}{10}=\frac{1}{2}\)
Vậy tam giác ABD ~ tam giác ACB ( c.g.c )
=> ^ABD = ^ACB ( 2 góc tương ứng )