K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

Làm gì có khái niệm hai tia bằng nhau.

ĐỀ ĐÚNG phải là hai ĐƯỜNG phân giác bằng nhau.

8 tháng 12 2016

B A C O E D 1 2 3 4 1 2 1 2

Giải:
Kẻ OI là tia phân giác của \(\widehat{AOC}\)

Xét \(\Delta ABC\) có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

\(\Rightarrow\widehat{A}+60^o+\widehat{C}=180^o\)

\(\Rightarrow\widehat{A}+\widehat{C}=120^o\)

Ta có: \(\frac{1}{2}\left(\widehat{A}+\widehat{C}\right)=\frac{1}{2}.120^o\)

\(\Rightarrow\frac{1}{2}\widehat{A}+\frac{1}{2}\widehat{C}=60^o\)

\(\Rightarrow\widehat{A_1}+\widehat{C_1}=60^o\)

Xét \(\Delta AOC\) có: \(\widehat{A_1}+\widehat{C_1}+\widehat{AOC}=180^o\)

\(\Rightarrow60^o+\widehat{AOC}=180^o\)

\(\Rightarrow\widehat{BOC}=120^o\)

\(\Rightarrow\widehat{O_2}=\widehat{O_3}\left(=\frac{1}{2}\widehat{AOC}\right)\)

\(\Rightarrow\widehat{O_2}=\widehat{O_3}=60^o\)

Ta có: \(\widehat{O_4}=\widehat{A_1}+\widehat{C_1}\) ( góc ngoài \(\Delta AOC\) )

\(\Rightarrow\widehat{O_4}=60^o\)

\(\widehat{O_1}=\widehat{A_1}+\widehat{C_1}\) ( góc ngoài \(\Delta AOC\)

\(\Rightarrow\widehat{O_1}=60^o\)

Xét \(\Delta EOA,\Delta IOA\) có:

\(\widehat{A_1}=\widehat{A_2}\left(=\frac{1}{2}\widehat{A}\right)\)

AO: cạnh chung

\(\widehat{O_1}=\widehat{O_2}\left(=60^o\right)\)

\(\Rightarrow\Delta EOA=\Delta IOA\left(g-c-g\right)\)

\(\Rightarrow OE=OI\) ( cạnh t/ứng ) (1)

Xét \(\Delta DOC,\Delta IOC\) có:
\(\widehat{C_1}=\widehat{C_2}\left(=\frac{1}{2}\widehat{C}\right)\)

OC: cạnh chung

\(\widehat{O_3}=\widehat{O_4}\left(=60^o\right)\)

\(\Rightarrow\Delta DOC=\Delta IOC\left(g-c-g\right)\)

\(\Rightarrow OD=OI\) ( cạnh t/ứng ) (2)

Từ (1) và (2) \(\Rightarrow OE=OD\left(=OI\right)\)

Vậy \(OE=OD\)

 

 

 

 

7 tháng 4 2021

undefinedundefined

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{ABC}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

b) Xét ΔHBA vuông tại H và ΔHAC vuông tại H có 

\(\widehat{HBA}=\widehat{HAC}\left(=90^0-\widehat{C}\right)\)

Do đó: ΔHBA\(\sim\)ΔHAC(g-g)

Suy ra: \(\dfrac{HB}{HA}=\dfrac{HA}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AH^2=HB\cdot HC\)(đpcm)

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

=>BH/BA=BA/BC

=>BA^2=BH*BC

b: BC=căn 9^2+12^2=15cm

AH=9*12/15=7,2cm

27 tháng 10 2017

Cậu vào câu hỏi tương tự nhé !

27 tháng 10 2017

Không có bạn ơi