K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2022

Hình như do coppy nên đề lỗi đọc xong không hiểu hỏi gì

12 tháng 1 2022

\(a,P=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\\ P=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\)

\(b,P=\dfrac{1}{2}\Leftrightarrow4-10\sqrt{x}=\sqrt{x}+3\Leftrightarrow\sqrt{x}=\dfrac{7}{11}\Leftrightarrow x=\dfrac{49}{121}\left(tm\right)\)

\(c,P-\dfrac{2}{3}=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}-\dfrac{2}{3}=\dfrac{6-15\sqrt{x}-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}=\dfrac{-17\sqrt{x}}{3\left(\sqrt{x}+3\right)}\)

Ta có \(3\left(\sqrt{x}+3\right)>0;-17\sqrt{x}\le0,\forall x\)

\(\Rightarrow P-\dfrac{2}{3}\le0\Leftrightarrow P\le\dfrac{2}{3}\left(đpcm\right)\)

a: \(P=\dfrac{2x-2-3x-3+x+7}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)

\(=\dfrac{2}{1-2x}\)

\(P=\dfrac{-x^4+2x^3-2x+1}{4x^2-1}+\dfrac{8x^2-4x+2}{8x^3+1}\)

\(=\dfrac{\left(1-x^2\right)\left(1+x^2\right)+2x\left(x^2-1\right)}{4x^2-1}+\dfrac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)

\(=\dfrac{\left(1-x^2\right)\left(1+x^2-2x\right)}{4x^2-1}+\dfrac{2}{2x+1}\)

\(=\dfrac{\left(1-x^2\right)\left(x^2-2x+1\right)+4x-2}{4x^2-1}\)

 

 

20 tháng 5 2022

TKS bạn

 

9 tháng 7 2021

a) Rút gọn P

ĐKXĐ: \(x\ge0;x\ne1\)

\(P=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)\(-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)\(-\dfrac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{15\sqrt{x}-11-\left(3x+9\sqrt{x}-2\sqrt{x}-6\right)-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)\(=\dfrac{\left(-5\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)\(=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\)

b) Tìm GTLN

\(P=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}=\dfrac{17-5\left(\sqrt{x}+3\right)}{\sqrt{x}+3}=\dfrac{17}{\sqrt{x}+3}-5\)

Ta có: \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+3\ge3\Rightarrow P=\dfrac{17}{\sqrt{x}+3}-5\le\dfrac{17}{3}-5=\dfrac{2}{3}\)

Dấu "=" xảy ra khi \(x=0\)

Vậy \(P_{max}=\dfrac{2}{3}\) khi \(x=0\)

 

 

23 tháng 4 2022

a: \(P=\dfrac{3\sqrt{x}+1}{\sqrt{x}+1}+\dfrac{3}{\sqrt{x}+1}=\dfrac{3\sqrt{x}+4}{\sqrt{x}+1}\)

b: \(P-4=\dfrac{3\sqrt{x}+4-4\sqrt{x}-4}{\sqrt{x}+1}=-\dfrac{\sqrt{x}}{\sqrt{x}+1}< 0\)

=>P<4

8 tháng 12 2019

\(a,4x^2\left(5x-3y\right)-5x^2\left(4x+y\right)\)

\(=20x^3-12x^2y-20x^3-5x^2y\)

\(=-17x^2y=-17\left(-2\right)^2.\left(-3\right)=204\)

\(b,\left(x-4\right)\left(x-2\right)-\left(x-1\right)\left(x-3\right)\)

\(=x^2-6x+8-x^2+4x-3\)

\(=-2x+5=-2.74+5=143\)

6 tháng 11 2021

a, \(\Rightarrow M=\dfrac{x}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

 \(\Rightarrow M=\dfrac{x-4\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(\Rightarrow M=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(\Rightarrow M=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

b, \(x=3+2\sqrt{2}\Rightarrow M=\dfrac{\sqrt{3+2\sqrt{2}}-2}{\sqrt{3+2\sqrt{2}}}=\dfrac{\sqrt{2+2\sqrt{2}.1+1}-2}{\sqrt{2+2\sqrt{2}.1+1}}=\dfrac{\sqrt{2}+1-2}{\sqrt{2}+1}=\dfrac{\sqrt{2}-1}{\sqrt{2}+1}=\dfrac{\left(\sqrt{2}-1\right)^2}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\dfrac{2-2\sqrt{2}+1}{2-1}=3-2\sqrt{2}\)

c, \(M>0\Rightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}}>0\Rightarrow\sqrt{x}-2>0\Rightarrow\sqrt{x}>2\Rightarrow x>4\)

28 tháng 6 2021

`a)(sqrtx-3)/(sqrtx-2)-(2sqrtx-1)/(sqrtx-1)+(x-2)/(x-3sqrtx+2)`

`=(x-4sqrtx+3-(2sqrtx-1)(sqrtx-2)+x-2)/(x-3sqrtx+2)`

`=(2x-4sqrtx+1-2x+5sqrtx-2)/(x-3sqrtx+2)`

`=(sqrtx-1)/(x-3sqrtx+2)`

`=1/(sqrtx-2)`

`b)((x+2)/(xsqrtx-1)-sqrtx/(x+sqrtx+1)+1/(1-sqrtx)):(sqrtx-1)/2`

`=((x+2-x+sqrtx-x-sqrtx-1)/(xsqrtx-1))*2/(sqrtx-1)`

`=(1-x)/(xsqrtx-1)*2/(sqrtx-1)`

`=(-2(sqrtx+1))/(x+sqrtx+1)`

a) Ta có: \(A=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{x-3\sqrt{x}+2}\)

\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}+\dfrac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x-4\sqrt{x}+3-2x+4\sqrt{x}+\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{1}{\sqrt{x}-2}\)

b) Ta có: \(\left(\dfrac{x+2}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)

\(=\dfrac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{-\sqrt{x}+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{-2\sqrt{x}-2}{x\sqrt{x}-1}\)