Giari phương trình
\(^{^{ }x^2+\frac{4x^2}{\left(x+2\right)^2}^{ }=12}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+2\right)^2=9\left(x^2-4x+4\right)\)
\(\Leftrightarrow\left(x+2\right)^2=3^2\left(x-2\right)^2\)
\(\Leftrightarrow\left(x+2\right)^2=\left(3x-6\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=3x-6\\x+2=6-3x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-8=0\\4x-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{4;1\right\}\)
pt \(\Rightarrow\)\(x\left(x+1\right)\left(x+4\right)\left(x+3\right)+1=3\left[\left(x+2\right)^2\left(x+5\right)\left(x-1\right)+2\right]\)
\(\Leftrightarrow\left(x^2+4x\right)\left(x^2+4x+3\right)+1=3\left[\left(x^2+4x+4\right)\left(x^2+4x-5\right)+2\right]\)
đến dây bn đặt \(x^2+4x=a\)
pt \(\Leftrightarrow a\left(a+3\right)+1=3\left[\left(a+4\right)\left(a-5\right)+2\right]\)
đén đay bn làm nốt nhé
Đống nhất hệ số đưa và dạng 2 pt bậc 2 nhân vs nhau :v
1 có nghiệm
2 vô nghiệm
:)
Theo như đã nhìn
Ta thấy 2 điều
1. Đây là 1 bài toán
2. Sau khi xài máy tính tính , nó = 0,7320508076
ĐKXĐ: x\(\ne-2\)
Ta co
\(x^2+\frac{4x^2}{\left(x+2\right)^2}=12\)
=> \(x^2-2.x.\frac{2x}{x+2}+\frac{4x^2}{\left(x+2\right)^2}\)\(+2.x.\frac{2x}{x+2}\)=12
=> \(\left(x-\frac{2x}{x+2}\right)^2+\frac{4x^2}{x+2}-12=0\)
=>\(\frac{x^4}{\left(x+2\right)^2}+\frac{4x^2}{x+2}-12=0\)(1)
Đặt \(\frac{x^2}{x+2}=y\)
(1)<=>y2+4y-12=0
<=>(y+6)(y-2)=0
Đến đây dễ rồi bạn tự làm tiếp nhé
Nói thật chứ mình ghét phải gõ Công thức toán trên olm. Ức cmn chế
\(--------------\)
\(ĐKXĐ:\)\(x\ne-2\)
\(pt\) \(\Leftrightarrow\) \(x^2-\frac{4x^2}{x+2}+\frac{4x^2}{\left(x+2\right)^2}=12-\frac{4x^2}{x+2}\)
\(\Leftrightarrow\) \(\left(x-\frac{2x}{x+2}\right)^2=12-\frac{4x^2}{x+2}\)
\(\Leftrightarrow\) \(\left(\frac{x^2}{x+2}\right)^2+\frac{4x^2}{x+2}-12=0\)
Đặt \(t=\frac{x^2}{x+2}\Rightarrow t\ne0\) ta suy ra được \(t\) là nghiệm của phương trình:
\(t^2+4t-12=0\)
(*Lưu ý: bạn dùng delta hay biến đổi gì thì tùy)
Kết luận: \(S=\left\{1+\sqrt{5};1-\sqrt{5}\right\}\)
ĐKXĐ : \(x\ne-2\)
\(x^2+\frac{4x^2}{\left(x+2\right)^2}=12\)
Cộng vào hai vê của pt với \(-\frac{4x^2}{x+2}\) được :
\(x^2-\frac{4x^2}{x+2}+\frac{4x^2}{x+2}=12-\frac{4x^2}{x+2}\)
\(\Leftrightarrow\left(x-\frac{2x}{x+2}\right)^2=12-\frac{4x^2}{x+2}\)
\(\Leftrightarrow\left(\frac{x^2}{x+2}\right)^2=12-\frac{4x^2}{x+2}\)
Đặt \(t=\frac{x^2}{x+2}\) thì pt trở thành \(t^2=12-4t\Leftrightarrow t^2+4t-12=0\Leftrightarrow\left(t+6\right)\left(t-2\right)=0\Leftrightarrow\orbr{\begin{cases}t=2\\t=-6\end{cases}}\)
Từ đó dễ dàng tìm ra x
Đặt \(x+\frac{1}{x}=t\Rightarrow\left(x+\frac{1}{x}\right)^2=t^2\Leftrightarrow x^2+\frac{1}{x^2}=t^2-2\)
Khi đó phương trình đã cho
\(\Leftrightarrow2t^2+\left(t^2-2\right)^2-t^2\left(t^2-2\right)=4-4x+x^2\)
\(\Leftrightarrow2t^2+t^4-4t^2+4-t^4+2t^2=x^2-4x+4\)
\(\Leftrightarrow4=x^2-4x+4\)
\(\Leftrightarrow x^2-4x=0\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
Mà ĐKXĐ của phương trình là \(x\ne0\)
Tập nghiệm của pt là \(S=\left\{4\right\}\)
Đặt \(x+\frac{1}{x}=a\)
\(\Rightarrow\left(x+\frac{1}{x}\right)^2=a^2\Leftrightarrow x^2+\frac{1}{x^2}+2=a^2\Leftrightarrow x^2+\frac{1}{x^2}=a^2-2\)
Có \(2a^2+\left(a^2-2\right)^2-a^2\left(a^2-2\right)=\left(2-x\right)^2\)
\(2a^2+a^4-4a^2+4-a^4+2a^2=\left(2-x\right)^2\)
\(\Leftrightarrow4=\left(2-x\right)^2\)
\(\Rightarrow\orbr{\begin{cases}2-x=4\\2-x=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=6\end{cases}}\)
Vậy \(S=\left(-2;6\right)\)