Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ne-2\)
Pt đã cho tương đương với:
\(x^2+\dfrac{\left(2x\right)^2}{\left(x+2\right)^2}-2.x.\dfrac{2x}{x+2}+\dfrac{4x^2}{x+2}=12\)
\(\Leftrightarrow\left(x-\dfrac{2x}{x+2}\right)^2+\dfrac{4x^2}{x+2}=12\)
\(\Leftrightarrow\left(\dfrac{x^2+2x-2x}{x+2}\right)^2+\dfrac{4x^2}{x+2}=12\)
\(\Leftrightarrow\left(\dfrac{x^2}{x+2}\right)^2+\dfrac{4x^2}{x+2}-12=0\)
Đặt \(\dfrac{x^2}{x+2}=t\). Khi đó pt trên trở thành:
\(t^2+4t-12=0\)
Giải pt này tìm t, rồi từ đó tìm được x. Đối chiếu lại với ĐKXĐ rồi sẽ kết luận được số nghiệm của pt đã cho.
Ta có:
\(a-b+c=4-\left(m^2+2m-15\right)+\left(m+1\right)^2-20\)
\(=-m^2-2m+19+m^2+2m+1-20\)
\(=0\)
\(\Rightarrow\) Phương trình đã cho luôn luôn có 2 nghiệm: \(\left[{}\begin{matrix}x=-1\\x=\dfrac{20-\left(m+1\right)^2}{4}\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x_1=-1\\x_2=5-\dfrac{\left(m+1\right)^2}{4}\end{matrix}\right.\)
\(\Rightarrow1+5-\dfrac{\left(m+1\right)^2}{4}+2019=0\)
\(\Leftrightarrow\left(m+1\right)^2=8100\Rightarrow\left[{}\begin{matrix}m+1=90\\m+1=-90\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=89\\m=-91\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x_1=5-\dfrac{\left(m+1\right)^2}{4}\\x_2=-1\end{matrix}\right.\)
\(\Rightarrow\left[5-\dfrac{\left(m+1\right)^2}{4}\right]^2-1+2019=0\)
\(\Leftrightarrow\left[5-\dfrac{\left(m+1\right)^2}{4}\right]^2+2018=0\) (vô nghiệm do vế trái luôn dương)
Vậy \(\left[{}\begin{matrix}m=89\\m=-91\end{matrix}\right.\)
ĐKXĐ : \(x\ne-2\)
\(x^2+\frac{4x^2}{\left(x+2\right)^2}=12\)
Cộng vào hai vê của pt với \(-\frac{4x^2}{x+2}\) được :
\(x^2-\frac{4x^2}{x+2}+\frac{4x^2}{x+2}=12-\frac{4x^2}{x+2}\)
\(\Leftrightarrow\left(x-\frac{2x}{x+2}\right)^2=12-\frac{4x^2}{x+2}\)
\(\Leftrightarrow\left(\frac{x^2}{x+2}\right)^2=12-\frac{4x^2}{x+2}\)
Đặt \(t=\frac{x^2}{x+2}\) thì pt trở thành \(t^2=12-4t\Leftrightarrow t^2+4t-12=0\Leftrightarrow\left(t+6\right)\left(t-2\right)=0\Leftrightarrow\orbr{\begin{cases}t=2\\t=-6\end{cases}}\)
Từ đó dễ dàng tìm ra x
Nói thật chứ mình ghét phải gõ Công thức toán trên olm. Ức cmn chế
\(--------------\)
\(ĐKXĐ:\)\(x\ne-2\)
\(pt\) \(\Leftrightarrow\) \(x^2-\frac{4x^2}{x+2}+\frac{4x^2}{\left(x+2\right)^2}=12-\frac{4x^2}{x+2}\)
\(\Leftrightarrow\) \(\left(x-\frac{2x}{x+2}\right)^2=12-\frac{4x^2}{x+2}\)
\(\Leftrightarrow\) \(\left(\frac{x^2}{x+2}\right)^2+\frac{4x^2}{x+2}-12=0\)
Đặt \(t=\frac{x^2}{x+2}\Rightarrow t\ne0\) ta suy ra được \(t\) là nghiệm của phương trình:
\(t^2+4t-12=0\)
(*Lưu ý: bạn dùng delta hay biến đổi gì thì tùy)
Kết luận: \(S=\left\{1+\sqrt{5};1-\sqrt{5}\right\}\)