chờ x,ý >0 thỏa mãn \(x+y\le1\) Giá trị nhỏ nhất của \(A=\frac{1}{x^2+y^2}+\frac{5}{xy}\) là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(x>0,y>0\)thỏa mãn\(x+y\le1\)
Tìm giá trị nhỏ nhất của: \(P=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
\(P=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{5}{4.\frac{\left(x+y\right)^2}{4}}\)
\(=4+2+5=11\)
Dấu "=" xảy ra khi x = y = \(\frac{1}{2}\)
\(M=\frac{x^2+9y^2}{xy}-\frac{8y^2}{xy}\)
\(\ge\frac{2\sqrt{9x^2y^2}}{xy}-\frac{8.y.y}{xy}\)
\(\ge6-\frac{8.\frac{x}{3}.y}{xy}=6-\frac{8}{3}=\frac{10}{3}\)
Đẳng thức xảy ra khi x = 3y.
Vậy..
\(x\ge3y\Leftrightarrow\frac{x}{y}\ge3\)
\(M=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}\)
\(\text{Đặt}\frac{x}{y}=a\Rightarrow a\ge3,M=a+\frac{1}{a}\)
Dùng điểm rơi a=3
\(M=\frac{8}{9}a+\frac{1}{9}a+\frac{1}{a}\ge\frac{8}{9}a+\frac{2}{3}\ge\frac{8}{3}+\frac{2}{3}=\frac{10}{3}\)
áp dụng bđt Schwarz thôi mak :
A >/ (x+y+z)/2
phần còn lại là c/m x+y+z >/ căn xy + căn yz + căn zx >/ 1 =>A >/ 1/2
thật lòng xin lỗi anh chị , em mới hok lớp 6 hà !!!!!!
P/s dùng bđt 1/a+1/b >=4/(a+b)
bạn chọn điểm rơi nha
tách 5/xy=1/2xy +...........