Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT svacxơ, ta có
\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\ge4\)
Dấu = xảy ra <=>x=y=1/2
^_^
\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
ta có\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\)
Áp dụng bất đẳng thức côsin cho 2 số dương , ta có:
\(2\sqrt{xy}\le x+y\le1\Leftrightarrow2xy\le\frac{1}{2}\)
Để A đạt GTNN thì \(\left(x+y\right)^2\)va\(2xy\) phai dat GTLN
\(\Rightarrow A\ge\frac{4}{1}+\frac{1}{2}\Leftrightarrow A\ge\frac{9}{2}\)
\(a=\frac{9}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Làm tiếp ạ
\(\Rightarrow P\ge\frac{289}{16}\)
Dấu"="Xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Vậy MIN P=\(\frac{289}{16}\)\(\Leftrightarrow x=y=\frac{1}{2}\)
Em chả có cách gì ngoài cô si mù mịt :v
\(\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
\(=\left(x^2+\frac{1}{16y^2}+\frac{1}{16y^2}+.....+\frac{1}{16y^2}\right)\left(y^2+\frac{1}{16x^2}+\frac{1}{16x^2}+.....+\frac{1}{16x^2}\right)\)
\(\ge17\sqrt[17]{\frac{x^2}{16^{16}\cdot y^{32}}}\cdot17\sqrt[17]{\frac{y^2}{16^{16}\cdot x^{32}}}\)
\(=17^2\sqrt[17]{\frac{x^2y^2}{16^{32}\cdot x^{32}\cdot y^{32}}}\)
\(=17^2\sqrt[17]{\frac{1}{16^{32}\cdot\left(xy\right)^{30}}}\)
\(\ge17^2\sqrt[17]{\frac{1}{16^{32}\left(\frac{x+y}{2}\right)^{60}}}=\frac{289}{16}\)
Dấu "=" xảy ra tại x=y=1/2