Cho a,b,c là các số nguyên thỏa mãn a^3+b^3=2021c^3. Chứng minh rằng : a+b+c chia hết cho 3 . Mọi ng giúp em với ah em cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3+b^3=2021c^3\\ \Leftrightarrow a^3+b^3+c^3=2022c^3⋮6\left(2022⋮6\right)\left(1\right)\)
Mặt khác: \(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)=\left(a-1\right)a\left(a+1\right)+\left(b-1\right)b\left(b+1\right)+\left(c-1\right)c\left(c+1\right)\)
Có \(\left(a-1\right)a\left(a+1\right);\left(b-1\right)b\left(b+1\right);\left(c-1\right)c\left(c+1\right)\) là 3 cặp số nguyên liên tiếp nên chia hết cho 6
Do đó \(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\)
Kết hợp (1) ta được đpcm
=>5(a^3+b^3+c^3+d^3)=18(c^3+d^3)
=>5(a^3+b^3+c^3+d^3) chia hết cho 6
=>a^3+b^3+c^3+d^3 chia hêt cho 6
a^3-a=a(a+1)(a-1) chia hết cho 3!=6
b^3-b=b(b+1)(b-1) chia hết cho 3!=6
c^3-c=c(c+1)(c-1) chia hết cho 3!=6
d^3-d=d(d+1)(d-1) chia hết cho 3!=6
=>a^3+b^3+c^3+d^3-a-b-c-d chia hết cho 6
=>a+b+c+d chia hết cho 6
Ta có \(P=a^3+b^3+c^3\)
\(P=\left(a^3-a\right)+\left(b^3-7b\right)+\left(2c^3-2024c\right)+a+7b+2024c-c^3\)
\(P=a\left(a^2-1\right)+b\left(b^2-7\right)+2c\left(c^2-1012\right)\) ( do \(a+7b+2024c=c^3\))
Dễ thấy \(a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\) là tích của 3 số nguyên liên tiếp nên chia hết cho 6.
Xét \(f\left(b\right)=b\left(b^2-7\right)\). Dễ thấy \(f\left(b\right)\) chẵn với mọi số nguyên \(b\). Nếu \(b⋮3\Rightarrow f\left(b\right)⋮3\). Nếu \(b⋮̸3\) thì \(b^2\equiv1\left[3\right]\) \(\Rightarrow b^2-7⋮3\) \(\Rightarrow f\left(b\right)⋮3\). Vậy \(f\left(b\right)⋮3\) với mọi số nguyên \(b\). Vậy thì \(f\left(b\right)⋮6\)
Xét \(g\left(c\right)=2c\left(c^2-1012\right)\). Cũng dễ thấy \(g\left(c\right)\) chẵn. Nếu \(c⋮3\) thì \(g\left(c\right)⋮3\). Nếu \(c⋮̸3\) thì \(c^2\equiv1\left[3\right]\) \(\Rightarrow c^2-1012⋮3\) \(\Rightarrow g\left(c\right)⋮3\). Thế thì \(g\left(c\right)⋮6\) với mọi số nguyên \(c\)
Từ đó \(P=a\left(a^2-1\right)+f\left(b\right)+g\left(c\right)⋮6\), đpcm.
thử bài bất :D
Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)
Hoàn toàn tương tự:
\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)
\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)
Cộng (*),(**),(***) vế theo vế ta được:
\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)
Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )
Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=1
1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D
Ta có: \(a^3+b^3=2021c^3\)\(\Leftrightarrow a^3+b^3+c^3=2022c^3\)
Mà \(2022⋮3\)\(\Rightarrow2022c^3⋮3\)\(\Rightarrow a^3+b^3+c^3⋮3\)
Mặt khác \(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)\)\(=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
\(=a\left(a^2-1\right)+b\left(b^2-1\right)+c\left(c^2-1\right)\)
\(=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)\)
Vì \(a,a-1,a+1\)là 3 số liên tiếp nên trong 3 số này luôn tồn tại một bội của 3
\(\Rightarrow a\left(a-1\right)\left(a+1\right)⋮3\)
Tương tự, ta cũng có \(b\left(b-1\right)\left(b+1\right)⋮3\)và \(c\left(c-1\right)\left(c+1\right)⋮3\)
\(\Rightarrow a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)⋮3\)
\(\Rightarrow\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮3\)
Mà \(a^3+b^3+c^3⋮3\left(cmt\right)\)\(\Rightarrow a+b+c⋮3\left(đpcm\right)\)