\(a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2017

đề bài đúng ko vậy bạn?

8 tháng 5 2017

Đề bài chắc chắn đúng bạn ạ

16 tháng 11 2016

Xét hiệu: (a3 + b3 + c3) - (a + b + c)

= (a3 - a) + (b3 - b) + (c3 - c)

= a.(a2 - 1) + b.(b2 - 1) + c.(c2 - 1)

= a.(a - 1).(a + 1) + b.(b - 1).(b + 1) + c.(c - 1).(c + 1)

Dễ thấy mỗi tích trên chia hết cho 6 vì là tích 3 số nguyên liên tiếp

=> (a3 + b3 + c3) - (a + b + c) chia hết cho 6

Mà a + b + c chia hết cho 6 => a3 + b3 + c3 chia hết cho 6 (đpcm)

15 tháng 12 2017

Ái chà chà

15 tháng 12 2017

hihi

25 tháng 8 2020

Bài làm:

Ta có:

(a-b)2+(b-c)2+(c-a)2=(a+b-2c)2+(b+c-2a)2+(c+a-2b)2

<=> a2-2ab+b2+b2-2bc+c2+c2-2ca+a2=6a2+6b2+6c2-6(ab+bc+ca)

<=> \(4a^2+4b^2+4c^2-4ab-4bc-4ca=0\)

<=> \(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

<=> \(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

=> \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Rightarrow a=b=c\)

25 tháng 8 2020

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=\left(a+b-2c\right)^2+\left(b+c-2a\right)^2+\left(c+a-2b\right)^2\)

\(\Leftrightarrow\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2-4ab-4bc-4ca=\left(a+b\right)^2\)

\(+\left(b+c\right)^2+\left(c+a\right)^2-4\left(b+c\right)a+4a^2-4\left(c+a\right)b+4b^2-4\left(a+b\right)c+4c^2\)

\(\Leftrightarrow-4ab-4bc-4ca=-4\left(b+c\right)a+4a^2-4\left(c+a\right)b+4b^2-4\left(a+b\right)c+4c^2\)

\(\Leftrightarrow ab-\left(a+b\right)c+c^2+bc-\left(b+c\right)a+a^2+ca-\left(c+a\right)b+b^2=0\)

\(\Leftrightarrow ab-ac-bc+c^2+bc-ba-ca+a^2+ca-cb-ab+b^2=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)