\(x^3 + ax +b\) chia hết cho đa thức Q(x)= \(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2019

c) Cách 1:

x^4+3x^3-x^2+ax+b x^2+2x-3 x^2+x x^4+2x^3-3x^2 - x^3+2x^2+ax+b x^3+2x^2-3x - (a+3)x+b

Để \(P\left(x\right)⋮Q\left(x\right)\)

\(\Leftrightarrow\left(a+3\right)x+b=0\)

\(\Leftrightarrow\hept{\begin{cases}a+3=0\\b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=0\end{cases}}\)

Vậy a=-3 và b=0 để \(P\left(x\right)⋮Q\left(x\right)\)

19 tháng 10 2019

a) 

  2n^2-n+2 2n+1 n-1 2x^2+n - -2n+2 -2n-1 - 3

Để \(2n^2-n+2⋮2n+1\)

\(\Leftrightarrow3⋮2n+1\)

\(\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow n\in\left\{0;1;-2;-1\right\}\)

Vậy \(n\in\left\{0;1;-2;-1\right\}\)để \(2n^2-n+2⋮2n+1\)

NM
15 tháng 8 2021

a, Ta có \(Q\left(x\right)=x+1=0\Leftrightarrow x=-1\)

Vậy P(x) chia hết cho Q(x) khi P(x) có nghiệm là -1 hay

\(3\left(-1\right)^3+2\left(-1\right)^2-5\left(-1\right)+m=0\Leftrightarrow m=-4\)

b.. ta có \(Q\left(x\right)=x^2-3x+2=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

Vậy P(x) chia hết cho Q(x) khi P(x) có nghiệm là 1  và 2 hay

\(\hept{\begin{cases}2+a+b+3=0\\2.2^3+a.2^2+b.2+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=-5\\4a+2b=-19\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-\frac{9}{2}\\b=-\frac{1}{2}\end{cases}}\)

26 tháng 11 2019

Bài 1 : 

Gọi f( x )  = 2n2 + n - 7

       g( x ) = n - 2

Cho g( x )  = 0

\(\Leftrightarrow\)n - 2 = 0

\(\Rightarrow\)n      = 2

\(\Leftrightarrow\)f( 2 ) = 2 . 22 + 2 - 7

\(\Rightarrow\)f( 2 )  = 3

Để f( x ) \(⋮\)g( x )

\(\Rightarrow\)n - 2 \(\in\)Ư( 3 )  = { \(\pm\)1 ; \(\pm\)3 }

Ta lập bảng :

n - 21- 13- 3
n315- 1

Vậy : n \(\in\){ - 1 ; 1 ; 3 ; 5 }

26 tháng 11 2019

2n^2+n-7 n-2 2n+6 2n^2-4n 6n-7 6n-12 5

Để \(2n^2+n-7⋮n-2\) thì \(5⋮n-2\)

Làm nốt

AH
Akai Haruma
Giáo viên
25 tháng 3 2021

Bạn tham khảo lời giải tại đây:

Cho đa thức f(x) = x^2+ax+b(a,b thuộc Z).Chứng minh rằng tồn tại số nguyên tố k để f(x) = f(2019).f(2020) - Hoc24