K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
6 tháng 3 2021

Đặt độ dài cạnh tam giác là \(a\).

Theo công thức lượng trong tam giác vuông: 

\(sin60^o=\frac{h}{a}\Leftrightarrow a=\frac{h}{sin60^o}=\frac{2\sqrt{3}}{3}h\).

6 tháng 3 2021

Cho em hỏi có cách nào không dùng sin không ạ ?

12 tháng 8 2023

Hình 32 của bài 3 đâu em

5:

HB=căn AB^2-AH^2=5cm

AC=căn AH^2+HC^2=20cm

BC=HB+HC=5+16=21cm

ΔABC đều nên chiều cao của nó là \(3\cdot\dfrac{\sqrt{3}}{2}=\dfrac{3\sqrt{3}}{2}\)

Bán kính của đường tròn ngoại tiếp là: \(3\cdot\dfrac{\sqrt{3}}{3}=\sqrt{3}\)

10 tháng 3 2017

4:

a: Gọi độ dài cạnh góc vuông cần tìm là x

Theo đề, ta có: x^2+x^2=a^2

=>2x^2=a^2

=>x^2=a^2/2=2a^2/4

=>\(x=\dfrac{a\sqrt{2}}{2}\)

b:

Độ dài cạnh là;

\(h:\dfrac{\sqrt{3}}{2}=\dfrac{2h}{\sqrt{3}}\)

5: 

ΔAHB vuông tại H

=>AH^2+HB^2=AB^2

=>13^2=12^2+HB^2

=>HB=5cm

BC=5+16=21cm

ΔAHC vuông tại H

=>AH^2+HC^2=AC^2

=>AC^2=16^2+12^2=400

=>AC=20(cm)

23 tháng 5 2019



26 tháng 6 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Dây AB bằng cạnh hình vuông nội tiếp đường tròn (O) nên ta có: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 và cung nhỏ AB có số đo bằng 360 ° : 4 = 90 °

Dây BC bằng cạnh hình tam giác đều nội tiếp đường tròn (O) nên ta có:

BC = R 3 và cung nhỏ BC có số đo bằng  360 ° : 3 = 120 °

Ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Trong tam giác vuông ABH ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Trong tam giác vuông ACH ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

b: \(BH=\dfrac{5\sqrt{3}}{3}\left(cm\right)\)

a: Đề sai rồi bạn

13 tháng 2 2022

a.=> BC = BH + CH = 1 + 3 = 4 cm

áp dụng định lý pitago vào tam giác vuông AHB

\(AB^2=HB^2+AH^2\)

\(AB=\sqrt{1^2+2^2}=\sqrt{5}cm\)

áp dụng định lí pitago vào tam giác vuông AHC

\(AC^2=AH^2+HC^2\)

\(AC=\sqrt{2^2+3^2}=\sqrt{13}cm\)

12 tháng 5 2016

486 nha

5 tháng 7 2016

đáp án là 468 nhak bạn