K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
6 tháng 3 2021

Đặt độ dài cạnh tam giác là \(a\).

Theo công thức lượng trong tam giác vuông: 

\(sin60^o=\frac{h}{a}\Leftrightarrow a=\frac{h}{sin60^o}=\frac{2\sqrt{3}}{3}h\).

6 tháng 3 2021

Cho em hỏi có cách nào không dùng sin không ạ ?

12 tháng 8 2023

Hình 32 của bài 3 đâu em

5:

HB=căn AB^2-AH^2=5cm

AC=căn AH^2+HC^2=20cm

BC=HB+HC=5+16=21cm

b: \(BH=\dfrac{5\sqrt{3}}{3}\left(cm\right)\)

a: Đề sai rồi bạn

13 tháng 2 2022

a.=> BC = BH + CH = 1 + 3 = 4 cm

áp dụng định lý pitago vào tam giác vuông AHB

\(AB^2=HB^2+AH^2\)

\(AB=\sqrt{1^2+2^2}=\sqrt{5}cm\)

áp dụng định lí pitago vào tam giác vuông AHC

\(AC^2=AH^2+HC^2\)

\(AC=\sqrt{2^2+3^2}=\sqrt{13}cm\)

23 tháng 1 2022

a, Theo định lí Pytago tam giác ABH vuông tại H

\(AB=\sqrt{BH^2+AH^2}=\sqrt{5}cm\)

Theo định lí Pytago tam giác AHC vuông tại H

\(AC=\sqrt{AH^2+HC^2}=\sqrt{4+9}=\sqrt{13}\)cm 

-> BC = HB + HC = 4 cm 

b, Ta có tam giacs ABC đều mà BH là đường cao hay BH đồng thời là đường trung tuyến 

=> AH = AC/2 = 5/2 

Theo định lí Pytago tam giác ABH vuông tại H

\(BH=\sqrt{AB^2-AH^2}=\dfrac{5\sqrt{3}}{2}cm\)

TL LAỊ NHÉ

\(\sqrt{6^2-3^2}=3\sqrt{3}\)

HT Ạ

@@@@@@@@@

ta thấy tam giác đều sẽ có đường cao đồng thời là đừng trung tuyến(tam giác đều cũng là tam giác cân)

nên khi ta kẻ đừơng cao của tam giác đều,sẽ cia ta giác đều đó thành hai tam giác vuông có độ dài cạnh huyền là 6 cm và độ dài 1 cạnh góc vuông là 3cm.cạnh còn lại chính là đừng cao của tam giác đều đó

theo định lí pytago,ta sẽ tinhs đc độ dài đừng cao đó sẽ là

\(\sqrt{6^2-3^2}\)=5(cm)(do độ dài cạnh tam giác lớn hơn 0)

HT Ạ

5 tháng 3 2016

ai kết bạn với mình nào?

5 tháng 3 2016

a, Vì diện tích tam giác không đổi nên a.ha=b.hb=c.hc. Vì ha=hb=hnên a=b=c

b, Dùng Pytago: Gọi x là độ dài các cạnh, M là trung điểm BC suy ra MB=x:2, 

AB2+BM2AH2 suy ra x2+x2/4=a2.3/4 suy ra x=a