Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hai tam giác vuông ABO và ACO có chung cạnh huyền AO nên A, B, O, C cùng thuộc đường tròn đường kính AO.
Vậy tứ giác ABOC là tứ giác nội tiếp.
b) Ta thấy ngay \(\Delta ABD\sim\Delta AEB\left(g-g\right)\)
\(\Rightarrow\frac{AB}{AE}=\frac{AD}{AB}\Rightarrow AE.AD=AB^2\)
Xét tam giác vuông ABO có BH là đường cao nên áp dụng hệ thức lượng ta có:
\(AH.AO=AB^2\)
Suy ra AD.AE = AH.AO
c) Ta có \(\widehat{PIK}+\widehat{IKQ}+\widehat{P}+\widehat{Q}=360^o\)
\(\Rightarrow2\left(\widehat{PIO}+\widehat{P}+\widehat{OKQ}\right)=360^o\)
\(\Rightarrow\widehat{PIO}+\widehat{P}+\widehat{OKQ}=180^o\)
Mặt khác \(\widehat{PIO}+\widehat{P}+\widehat{IOP}=180^o\)
\(\Rightarrow\widehat{IOP}=\widehat{OKQ}\Rightarrow\Delta PIO\sim\Delta QOK\)
\(\Rightarrow\frac{IP}{PO}=\frac{OQ}{KQ}\Rightarrow PI.KQ=PO^2\)
Sử dụng bất đẳng thức Cô-si ta có:
\(IP+KQ\ge2\sqrt{IP.KQ}=2\sqrt{OP^2}=PQ\)
acje cho hỏi 2 tam giác đồng dạng ở câu b là góc nào í chỉ ro rõ cho e với ạk
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔOBA vuông tại B có BH là đường cao ứng với cạnh huyền OA, ta được:
\(AH\cdot AO=AB^2\)(1)
Xét (O) có
\(\widehat{ABE}\) là góc tạo bởi tiếp tuyến BA và dây cung BE
\(\widehat{BDE}\) là góc nội tiếp chắn \(\stackrel\frown{BE}\)
Do đó: \(\widehat{ABE}=\widehat{BDE}\)(Hệ quả góc tạo bởi tiếp tuyến và dây cung)
hay \(\widehat{ABE}=\widehat{ADB}\)
Xét ΔABE và ΔADB có
\(\widehat{ABE}=\widehat{ADB}\)(cmt)
\(\widehat{BAE}\) chung
Do đó: ΔABE∼ΔADB(g-g)
Suy ra: \(\dfrac{AB}{AD}=\dfrac{AE}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow AB^2=AD\cdot AE\)(2)
Từ (1) và (2) suy ra \(AH\cdot AO=AE\cdot AD\)(đpcm)