7/15 x X +3/8x X
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(*)\(\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
\(=y\left(y+8\right)+15\) tại \(y=x^2+8x+7\)
\(=y^2+8y+15\)
\(=y^2+3y+5y+15\)
\(=y\left(y+3\right)+5\left(y+3\right)\)
\(=\left(y+5\right)\left(y+3\right)\)
(*)\(x^7+x^2+1\)
\(=x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+2x^2-x^2+x-x+1\)
\(=\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+\left(x^4+x^3+x^2\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)
\(=x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)
(*)\(\left(a+b\right)^3-c^3=\left(a+b-c\right)\left[\left(a+b\right)^2+\left(a+b\right)c+c^2\right]=\left(a+b-c\right)\left(a^2+2ab+b^2+ac+bc+c^2\right)\)
(*)\(x^4+x^3-x^2+x-2=x^4-x^3+2x^3-2x^2+x^2-x+2x-2\)
...........................................\(=x^3\left(x-1\right)+2x^2\left(x-1\right)+x\left(x-1\right)+2\left(x-1\right)\)
...........................................\(=\left(x-1\right)\left(x^3+2x^2+x-2\right)\)
...........................................\(=\left(x-1\right)\left[x\left(x^2+1\right)-2\left(x^2+1\right)\right]\)
............................................
\(=\left(x-1\right)\left(x-2\right)\left(x^2+1\right)\)
b: =>x(8-7)=-33
=>x=-33
c: =>-12x+60+21-7x=5
=>-19x=-76
hay x=4
d: =>-2x-2-x+5+2x=0
=>3-x=0
hay x=3
x+1)(x+3)(x+5)(x+7) + 15 = [ (x+1)(x+7) ].[ (x+3)(x+5) ] + 15
= (x² + 7x + x + 7).(x² + 5x + 3x + 15) + 15
= (x² + 8x + 7).(x² + 8x + 15) + 15
= (x² + 8x + 11 - 4)(x² + 8x + 11 + 4) + 15. Đặt x² + 8x + 11 = y (1) ta được.
(t - 4)(t + 4) + 15 = t² - 16 + 15 = t² - 1 = (t+1)(t-1) (2).
Thay (1) vào (2) ta được: đa thức trên được phân tích thành:
(x² + 8x + 11 + 1)(x² + 8x + 11 - 1) = x² + 8x + 12)(x² + 8x + 10).
Lưu ý: phương pháp này có tên là "Đặt ẩn phụ".
\(\left(x^2+8x+7\right)\cdot\left(x^2+8x+15\right)+15=\left(x^2+8x+11\right)^2-16+15\)
\(\left(x^2+8x+11\right)^2-1=\left(x^2+8x+10\right)\cdot\left(x^2+8x+12\right)=\left(x^2+8x+10\right)\cdot\left(x+2\right)\cdot\left(x+6\right)\)
( x2 + 8x + 7 )( x2 + 8x + 15 ) + 15 (1)
Đặt t = x2 + 8x + 7
(1) <=> t( t + 8 ) + 15
= t2 + 8t + 15
= t2 + 3t + 5t + 15
= t( t + 3 ) + 5( t + 3 )
= ( t + 3 )( t + 5 )
= ( x2 + 8x + 7 + 3 )( x2 + 8x + 7 + 5 )
= ( x2 + 8x + 10 )( x2 + 8x + 12 )
= ( x2 + 8x + 10 )( x2 + 2x + 6x + 12 )
= ( x2 + 8x + 10 )[ x( x + 2 ) + 6( x + 2 ) ]
= ( x2 + 8x + 10 )( x + 2 )( x + 6 )
x=7
nên x+1=8
\(A=x^{15}-x^{14}\left(x+1\right)+x^{13}\left(x+1\right)-...-x^2\left(x+1\right)+x\left(x+1\right)-5\)
\(=x-5=7-5=2\)
a, \(x\) + 99: 3 = 55
\(x\) + 33 = 55
\(x\) = 55 - 33
\(x\) = 22
b, (\(x\) - 25):15 = 20
\(x\) - 25 = 20 x 15
\(x\) - 25 = 300
\(x\) = 300 + 25
\(x\) = 325
c, (3\(x\) - 15).7 = 42
3\(x\) - 15 = 42:7
3\(x\) - 15 = 6
3\(x\) = 6 + 15
3\(x\) = 21
\(x\) = 21: 3
\(x\) = 7