K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2021

b) Gọi M là trung điểm DE.

\(\Delta ODE\)vuông tại O (vì \(\widehat{DOE}=90^0\)), có M là trung điểm DE 

\(\Rightarrow\)M là tâm đướng tròn ngoại tiếp \(\Delta ODE\)(với đường kình DE)

\(\Rightarrow\)O thuộc đường tròn đường kình DE hay \(O\in\left(M\right)\)

Dễ thấy AD//BE \(\left(\perp AB\right)\)\(\Rightarrow\)Tứ giác ABED là hình thang

Xét hình thang ABED (AD//BE) có O, M lần lượt là trung điểm của AB, DE 

\(\Rightarrow\)OM là đường trung bình của hình thang ABED

\(\Rightarrow\)OM//AD, mà \(AD\perp AB\)(DA là tiếp tuyến tại A của (O))

\(\Rightarrow AB\perp OM\)tại O

Mà \(O\in\left(M\right)\left(cmt\right)\)\(\Rightarrow\)AB là tiếp tuyến của (M) hay đường tròn đường kính DE (đpcm)

31 tháng 12 2021

Mình không vẽ hình vì sợ duyệt, không hiện lên được. Mình cũng sẽ chia bài này thành 3 câu trả lời cho 3 câu a,b,c cho ngắn. Để dài quá nó cũng bảo duyệt.

a) Xét đường tròn (O) có 2 tiếp tuyến tại A và C cắt nhau tại D (gt) \(\Rightarrow AD=CD\)(tính chất 2 tiếp tuyến cắt nhau) (1)

Tương tự, ta có \(BE=CE\)(2)

Vì \(C\in DE\left(gt\right)\)\(\Rightarrow CD+CE=DE\)(3)

Từ (1), (2) và (3) \(\Rightarrow AD+BE=DE\)(đpcm thứ nhất)
Đồng thời, theo tính chất của 2 tiếp tuyến cắt nhau, ta có OD, OE lần lượt là tia phân giác của \(\widehat{AOC},\widehat{BOC}\)

\(\Rightarrow\hept{\begin{cases}\widehat{DOC}=\frac{\widehat{AOC}}{2}\\\widehat{EOC}=\frac{\widehat{BOC}}{2}\end{cases}}\)\(\Rightarrow\widehat{DOE}=\widehat{DOC}+\widehat{EOC}=\frac{\widehat{AOC}+\widehat{BOC}}{2}=\frac{180^0}{2}=90^0\)(đpcm thứ hai)

26 tháng 7 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) CE và EB là 2 tiếp tuyến cắt nhau tại E

⇒ EC = EB và CB ⊥ OE

Tương tự, DC và DA là 2 tiếp tuyến cắt nhau tại D

⇒ DC = DA và AC ⊥ OD

Khi đó: AD + BE = DC + EC = DE

24 tháng 12 2018

O A B x y C C E F D I H K

a, Theo t/c tiếp tuyến của đường tròn

 EA = EC

 FC = FB

=>  EC + CF = EA + BF

=> EF  = AE + BF

b, Xét \(\Delta\)ABC có OA = OB = OC (bán kính)

=> \(\Delta\)ABC vuông tại C

=> AC \(\perp\)BC

Xét \(\Delta\)DAB vuông tại  A có AC là đường cao

=> \(AD^2=DC.DB\)(Hệ thức lượng)

c,Chưa ra, mai nghĩ ra thì giải cho ^^

11 tháng 11 2021

a: Xét (O) có

MC là tiếp tuyến

MA là tiếp tuyến

Do đó: MC=MA

Xét (O) có

NB là tiếp tuyến

NC là tiếp tuyến

Do đó: NB=NC

Ta có: MN=MC+CN

nên MN=MA+NB

13 tháng 11 2021

a: Xét (O) có

MA là tiếp tuyến

MC là tiếp tuyến

Do đó: MA=MC

Xét (O) có 

NC là tiếp tuyến

NB là tiếp tuyến

Do đó: NC=NB

Ta có: CM+CN=MN

nên MN=MA+NB

a: Xét (O) có

OM là bán kính

EF vuông góc OM tại M

Do đó: EF là tiếp tuyến của (O)

b: Xét (O) có

EM.EA là tiếp tuyến

nên EM=EA
Xét(O) có

FM,FB là tiếp tuyến

nên FM=FB

EF=EM+MF

=>EF=EA+FB

loading...  loading...