Bài 3: (4,0 điểm) Cho ΔABC có và AH là đường cao. Gọi D là điểm đối xứng với H qua AB, E là điểm đối xứng với H qua AC. Gọi I là giao điểm của AB và DH, K là giao điểm của AC và HE.
Chứng minh : góc AIK=ACB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AIHK có
\(\widehat{AIH}=\widehat{AKH}=\widehat{KAI}=90^0\)
Do đó: AIHK là hình chữ nhật
a) Xét tứ giác AIHK có 3 góc vuông nên AIHK là hình chữ nhật.
b) Do D và H đối xứng nhau qua AB nên AI cũng là phân giác góc DAH.
Vậy thì \(\widehat{BAH}=\frac{\widehat{DAH}}{2}\)
Tương tự \(\widehat{CAH}=\frac{\widehat{EAH}}{2}\)
Vậy nên \(\widehat{DAE}=2\left(\widehat{BAH}+\widehat{CAH}\right)=180^o\)
Vậy D, A, E thẳng hàng.
c) Ta có ngay do D, H đối xứng với nhau qua AB nên BH = BD
Tương tự ta có HC = EC
Vậy nên C = BH + HC = BD + EC.
d) Ta thấy : \(\Delta ADI=\Delta AHI\Rightarrow S_{ADI}=S_{AHI}\)
Tương tự \(S_{AKH}=S_{AKE}\Rightarrow S_{AIHK}=S_{DIA}+S_{AKE}\)
\(\Rightarrow S_{AIHK}=\frac{1}{2}S_{DHE}\)
Vậy \(S_{DHE}=2a\left(đvdt\right)\)
Xét tứ giác AIHE có
\(\widehat{AIH}=\widehat{AEH}=\widehat{EAI}=90^0\)
Do đó: AIHE là hình chữ nhật
1: H đối xứng D qua AB
=>AH=AD
H đối xứng E qua AC
=>AH=AE
=>AH=AD=AE
3: Xét ΔAIH và ΔADI có
AH=AD
góc HAI=góc DAI
AIchung
=>ΔAIH=ΔAID
=>góc AHI=góc ADI=góc ADE
Xét ΔAHK và ΔAEK có
AH=AE
góc HAK=góc EAK
AK chung
=>ΔAHK=ΔAEK
=>góc AEK=góc AHK=góc AED
=>góc AHK=góc AHI
=>HA là phân giác của góc IHK
Xét ΔAHB vuông tại H có HI là đường cao
nên \(AI\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HK là đường cao
nên \(AK\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)
hay \(\dfrac{AI}{AC}=\dfrac{AK}{AB}\)
Xét ΔAIK vuông tại A và ΔACB vuông tại A có
\(\dfrac{AI}{AC}=\dfrac{AK}{AB}\)
Do đó: ΔAIK\(\sim\)ΔACB
Suy ra: \(\widehat{AIK}=\widehat{ACB}\)