K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: H đối xứng D qua AB

nên ABlà trung trực của HD

=>AH=AD và ABvuông góc với HD tại I
=>ΔAHD cân tại A

=>AB là phân giác của góc HAD(1)

H đối xứng E qua AC

nên AC vuông góc với HE tại trung điểm của HE

=>AC là phân giác của góc HAE(2)

Xét tứ giác AIHK có

góc AIH=góc AKH=góc KAI=90 độ

nên AIHK là hình chữ nhật

b: Từ (1), (2) suy ra góc DAE=2*90=180 độ

=>D,A,E thẳng hàng

c: BD+CE=BH+CH=BC

22 tháng 12 2017

A C B H D E I K

a) Xét tứ giác AIHK có 3 góc vuông nên AIHK là hình chữ nhật.

b) Do D và H đối xứng nhau qua AB nên AI cũng là phân giác góc DAH.

Vậy thì \(\widehat{BAH}=\frac{\widehat{DAH}}{2}\)

Tương tự \(\widehat{CAH}=\frac{\widehat{EAH}}{2}\)

Vậy nên \(\widehat{DAE}=2\left(\widehat{BAH}+\widehat{CAH}\right)=180^o\)

Vậy D, A, E thẳng hàng.

c) Ta có ngay do D, H đối xứng với nhau qua AB nên BH = BD

Tương tự ta có HC = EC

Vậy nên C = BH + HC = BD + EC.

d) Ta thấy : \(\Delta ADI=\Delta AHI\Rightarrow S_{ADI}=S_{AHI}\)

Tương tự \(S_{AKH}=S_{AKE}\Rightarrow S_{AIHK}=S_{DIA}+S_{AKE}\)

\(\Rightarrow S_{AIHK}=\frac{1}{2}S_{DHE}\)

Vậy \(S_{DHE}=2a\left(đvdt\right)\)

14 tháng 12 2022

Cô ơi