K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 12 2021

Lời giải:

Ta có:

$\Delta'=(m-3)^2-(8-4m)=m^2-6m+9-8+4m=m^2-2m+1=(m-1)^2\geq 0$ với mọi $m\in\mathbb{R}$

Do đó pt luôn có nghiệm với mọi $m$

12 tháng 4 2018

Hỏi đáp Toán

a: \(\text{Δ}=\left(4m-4\right)^2-4\left(-4m+10\right)\)

\(=16m^2-32m+16+16m-40\)

\(=16m^2-16m-24\)

\(=8\left(2m^2-2m-3\right)\)

Để pT có nghiệm kép thì \(2m^2-2m-3=0\)

hay \(m\in\left\{\dfrac{1+\sqrt{7}}{2};\dfrac{1-\sqrt{7}}{2}\right\}\)

b: Thay x=2 vào PT, ta được:

\(4+8\left(m-1\right)-4m+10=0\)

=>8m-8-4m+14=0

=>4m+6=0

hay m=-3/2

Theo VI-et, ta được: \(x_1+x_2=-4\left(m-1\right)=-4\cdot\dfrac{-5}{2}=10\)

=>x2=8

NV
12 tháng 9 2021

\(\Leftrightarrow x^3-3x^2+2-\left(3x^2-2x-1\right)m=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-2x-2\right)-\left(x-1\right)\left(3mx+m\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-\left(3m+2\right)x-m-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2-\left(3m+2\right)x-m-2=0\left(1\right)\end{matrix}\right.\)

(1) luôn có 2 nghiệm pb. Để pt có 3 nghiệm pb \(\Rightarrow1-\left(3m+2\right)-m-2\ne0\Rightarrow m\ne-\dfrac{3}{4}\)

TH1: \(x_3=1\) và \(x_1;x_2\) là nghiệm của (1)

\(\Rightarrow3m+2=2\Rightarrow m=0\) (thỏa mãn)

TH2: \(x_1=1\) và \(x_2;x_3\) là nghiệm của (1)

Kết hợp hệ thức Viet ta được: \(\left\{{}\begin{matrix}x_2=2x_3-1\\x_2+x_3=3m+2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=2x_3-1\\x_3=m+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=2m+1\\x_3=m+1\end{matrix}\right.\)

Thế vào \(x_2x_3=-m-2\)

\(\Rightarrow\left(2m+1\right)\left(m+1\right)=-m-2\)

\(\Rightarrow2m^2+4m+3=0\) (vô nghiệm)

Vậy \(m=0\)

12 tháng 9 2021

e cam on , vay em lam dung roi :^^

14 tháng 6 2016

Mình hướng dẫn bạn nhé :))

Ta xét : \(\Delta'=\left(m-3\right)^2+4m-7=m^2-6m+9+4m-7=m^2-2m+2=\left(m-1\right)^2+1\ge1>0\)với mọi m thuộc tập số thực.

Vậy ta có điều phải chứng minh.

14 tháng 6 2016
Cho mình hỏi nếu Giải denta thì ra ntn có phải( 2m+1)² +7>0
NV
19 tháng 3 2021

a. Bạn tự giải

b. \(\Leftrightarrow\left\{{}\begin{matrix}x-2y=4m-5\\4x+2y=6m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=4m-5\\5x=10m-5\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2m-1\\y=-m+2\end{matrix}\right.\)

\(\dfrac{2}{x}-\dfrac{1}{y}=-1\Rightarrow\dfrac{2}{2m-1}-\dfrac{1}{-m+2}=-1\) (\(m\ne\left\{\dfrac{1}{2};2\right\}\))

\(\Leftrightarrow2\left(-m+2\right)-\left(2m-1\right)=\left(m-2\right)\left(2m-1\right)\)

\(\Leftrightarrow2m^2-m-3=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=\dfrac{3}{2}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
8 tháng 5 2018

Lời giải:

a) Ta thấy:

\(\Delta'=(m+1)^2-2m=m^2+1\geq 1>0, \forall m\in\mathbb{R}\)

Do đó pt luôn có hai nghiệm phân biệt với mọi $m$

b) Áp dụng định lý Viete của pt bậc 2 ta có:

\(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=2m\end{matrix}\right.\)

Do đó: \(x_1+x_2-x_1x_2=2(m+1)-2m=2\) là một giá trị không phụ thuộc vào $m$

Ta có đpcm.

19 tháng 3 2021

a. 

 \(\left\{{}\begin{matrix}x-2y=4.3-5\\2x+y=3.3\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}x-2y=7\\2x+y=9\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}-2x+4y=-14\\2x+y=9\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}5y=-5\\2x+y=9\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}y=-1\\2x-1=9\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}y=-1\\x=5\end{matrix}\right.\)

Vậy nghiệm của hpt là: (5;1)