K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2019

M P Q O H I K

a) Ta thấy OM là trung trực của PQ => OM vuông góc PQ => ^OKI = ^OHM = 900

=> \(\Delta\)OKI ~ \(\Delta\)OHM (g.g) => OH.OI = OK.OM (đpcm).

b) Áp dụng hệ thức lượng trong tam giác vuông có: OH.OI = OK.OM = OP2 = R2

Vì d,O đều cố định nên khoẳng cách từ O tới d không đổi hay OH không đổi

Vậy \(OI=\frac{R^2}{OH}=const\). Mà tia OI cố định nên I cố định (đpcm).

10 tháng 3 2022

câu a thì dễ còn b hơi khó

 

10 tháng 3 2022

a) có CNF + NFD=90

MBC+EFD=90

=> MBC+EFD=90 

=>MBC=MNC

=> TG BNMC nội tiếp (đpcm)

 

22 tháng 1 2017

Bạn vẽ hình ra nha,mình sẽ giải cho bạn

20 tháng 7 2019

A B C O M E D S H

Gọi S là trung điểm của đoạn OM, H là hình chiếu của S trên DE. Khi đó khoảng cách từ S đến DE là SH.

Ta sẽ chỉ ra SH = const, thật vậy: Do BM,CM là các tiếp tuyến tại B,C của (O) nên ^OBM = ^OCM (=900)

=> Tứ giác BOCM nội tiếp (OM). Ta cũng có: ^MEC = ^BAC (Vì ME // AB)

Theo tính chất góc tạo bởi tiếp tuyến và dây có ^BAC = ^MBC. Do đó ^MEC = ^MBC

=> Tứ giác MCEB nội tiếp. Tương tự, tứ giác MBDC nội tiếp

Từ đó sáu điểm B,D,O,E,C,M cùng thuộc đường tròn (OM) tâm là S => SD = SE = OM/2

Ta lại có OM2 = OC2 + CM2 = const (Vì O,C,M cố định) => SD = SE = const

Mặt khác ^DSE = 2^DME = 2^BAC = Sđ(BC = const => ^SDE = const => Sin^DSE = const

Hay \(\frac{SH}{SD}=const\). Mà SD không đổi nên SH không đổi => H cách S một khoảng không đổi

Ta thấy S cố định => (S;SH) cố định. Do DE vuông góc SH tại H nên DE luôn tiếp xúc với (S;SH) cố định (đpcm).

21 tháng 4 2023

PQ nhỏ nhất khi nào

15 tháng 5 2016

bạn vẽ hình ra đi

15 tháng 5 2016

Hình đâu bạn?