\(\left(O\notin AB\right)\). C là điểm di độn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2021

có góc AQB= 90 độ( góc nội tiếp chắn nửa đường tròn tâm O) Hay góc AQP=90 độ => góc QAP= 90 độ- góc QPA=90 độ-1/2sđ cung AP

có góc APC= 90 độ( góc nội tiếp chắn nửa đường tròn tâm O1)=> góc PAC=90 độ - góc PCA=90 độ - 1/2sđ cung AP

Vì vậy góc QAP= góc PAC hay AP là tia phân giác của  góc QAB

15 tháng 12 2021

Ta có: góc BQA =90o (góc nội tiếp chắn nửa (O))

Xét Δ PQA vuông tại Q có: góc QAP + góc QPA =90o ⇒ góc QAP=90o- góc QPA 

Mà góc QPA =1/2 sđ cung PA ( góc QPA là góc tạo bởi tia tiếp tuyến cà dây cung chắn cung AP của (O1))

⇒góc QAP=90o- 1/2 sđ cung PA (1)

Xét ΔCPA vuông tại P ( vì góc CPA là góc nội tiếp chắn nửa (O1)) có

góc PCA + góc PAC =90o⇒góc PAC =90o-góc PCA 

mà góc PCA =1/2 sđ cung PA ( góc nội tiếp chắn cung PA )

⇒góc PAC= 90o-1/2 sđ cung PA (2)

Từ (1) và (2) ⇒ góc QAP=góc PAC ⇒ AP là tia phân giác của góc QAB

 

1 tháng 3 2018

a) Giả sử AB < AC.  (Các trường hợp khác chứng minh tương tự)

Ta có tam giác CEF cân tại C nên \(\widehat{CEF}=\frac{180^o-\widehat{C}}{2}\)

\(\Rightarrow\widehat{MEB}=\frac{180^o-\widehat{C}}{2}\)

Ta có \(\widehat{MIB}=\widehat{IAB}+\widehat{IBA}=\frac{\widehat{A}+\widehat{B}}{2}=\frac{180^o-\widehat{C}}{2}\)

Hay \(\widehat{MEB}=\widehat{MIB}\). Suy ra tứ giác EMBI là tứ giác nội tiếp.

\(\widehat{IMB}=\widehat{IEB}=90^o\Rightarrow MB\perp AI.\)

b) Chứng minh tương tự \(\widehat{ANI}=90^o\Rightarrow\) tứ giác ANMB nội tiếp đường tròn đường kính AB cố định.

Mà \(\widehat{MBN}=90^o-\widehat{MIB}=\frac{\widehat{ACB}}{2}=\frac{\alpha}{2}=const\)

Do MN là dây cung chắn một góc không đổi trên đường tròn đường kính AB nên độ dài MN không đổi.

c) Gọi O là trung điểm AB thì \(\widehat{MON}=2.\widehat{MBN}=\alpha\)  

Do tứ giác IMBD nội tiếp nên \(\widehat{IDM}=\widehat{IBM}=\frac{\alpha}{2}\)

Tương tự : \(\widehat{IDN}=\frac{\alpha}{2}\)

Do đó \(\widehat{MDN}=\alpha=\widehat{NOM}\)

Suy ra tứ giác MNDO nội tiếp hay O thuộc đường tròn ngoại tiếp tam giác DMN.

Do đó đường tròn ngoại tiếp tam giác DMN luôn đi qua điểm O cố định khi C thay đổi.

1 tháng 2 2022
21 tháng 2 2022

a) Vì AH, HB, AB đều là các đường kính của các nửa đường tròn (O1) , (O2) và (O) nên tứ giác MPHQ có ba góc P, Q, M vuông. Vì vậy nó là hình chữ nhật.

Từ đó, ta có HM = PQ.
b) Vì MHPQ là hình chữ nhật nên \widehat{MPQ}=\widehat{MHQ}=\widehat{MBH}\left(=\dfrac{\stackrel\frown{HQ}}{2}\right)MPQ=MHQ=MBH(=2HQ), do đó APQB là tứ giác nội tiếp.

c) Ta có \widehat{O_1PA}=\widehat{PAO_1}=90^o-\widehat{HMP}=90^o-\widehat{MPQ}O1PA=PAO1=90oHMP=90oMPQ

\Rightarrow\widehat{O_1PA}+\widehat{MPQ}=90^o\Rightarrow\widehat{O_1PQ}=90^oO1PA+MPQ=90oO1PQ=90o nên PQ tiếp xúc nửa đường tròn (O1) tại P. 

Tương tự , PQ tiếp xúc (O2) tại Q hay PQ là tiếp tuyến chung của hai nửa đường tròn (O1) và (O2)

11 tháng 12 2017

a) AB và AC là tiếp tuyến của (O;R) =>AB⊥OB và AC⊥OC =>B và C nhìn OA góc 90° =>B và C cùng nằm trên đường tròn đường kính AO hay A,B,C,) cùng nằm trên đường tròn đường kính AO.
Hai △AOB và △AOC là 2 tam giác vuông có chung cạnh huyền OA và 2 cạnh góc vuông OB=OC (cùng = R) => △AOB = △AOC =>OA là phân giác ∠BOC mà △BOC cân tại B =>OA là đường trung trực của BC.
b)xét △ODB và △OBA có 2 góc vuông tại D và B, chung góc nhọn tại O =>△ODB ∼ △OBA =>OD/OB=OB/OA =>OA.OD=OB²=R².

14 tháng 2 2020

M A C x B D y H K O I

a) Tam giác AMC vuông tại M có MH là đường cao 

\(\Rightarrow MH=\sqrt{AH.BH}\)( hệ thức lượng trong tam giác vuông )
\(\Rightarrow MH=\sqrt{15}\left(cm\right)\)

b) Vì AC song song với BD nên ta có : \(\frac{AC}{BD}=\frac{AI}{ID}=\frac{CM}{MD}\)( vì \(AC=CM;BD=MD\))

\(\Rightarrow MI//AC\)mà \(MH//AC\) ( cùng vuông góc với AB )
 

Suy ra \(M,I,H\)thẳng hàng

c ) Đặt \(AB=a,AM=c,BM=b\)

Ta có:

\(AK=\frac{a+c-b}{2};BK=\frac{a+b-c}{2}\)

\(\Rightarrow AK.BK=\frac{a+c-b}{2}.\frac{a+b-c}{2}=\frac{1}{2}.\left[\frac{\left(a+c-b\right)\left(a+b-c\right)}{2}\right]\)

\(=\frac{1}{2}\left[\frac{a^2-\left(b-c\right)^2}{2}\right]=\frac{1}{2}\left[\frac{a^2-\left(b^2+c^2\right)+2bc}{2}\right]\)

\(=\frac{1}{2}.\frac{2bc}{2}=\frac{1}{2}.bc=\frac{1}{2}AM.MB=S_{AMB}\)

Vậy \(S_{AMB}=AK.KB\)

Chúc bạn học tốt !!!

7 tháng 9 2017

Học online 123 hỏi đáp tun cậy của h/s

10 tháng 7 2018

ủa bn vừa nãy nói nghĩa là sao vậy

18 tháng 12 2018

A B C I O M S H Q N D E F K J T

a) Gọi S là điểm chính giữa của cung nhỏ BC. Do dây BC cố định nên điểm S cũng cố định. Ta đi chứng minh tiếp tuyến tại M của (MKO) luôn đi qua S.

Do S là điểm chính giữa cung nhỏ BC của (O) => SB=SC và A,I,S thẳng hàng (Vì AI là phân giác của ^BAC nội tiếp chắn cung BC)

Ta có: ^SIB là góc ngoài \(\Delta\)AIB => ^SIB = ^IBA + ^IAB = 1/2(^BAC + ^ABC)

Mà ^SBI = ^IBC + ^SBC = 1/2(^ABC + ^CAS) = 1/2(^ABC + ^BAC) nên ^SIB = ^SBI => \(\Delta\)BSI cân tại S

=> SB=SI => SB=SC=SI => S là tâm của (BIC). Ta thấy M nằm trên (BIC) nên SM = SI (1)

Dễ thấy 3 điểm S,K,O thẳng hàng (Cùng nằm trên trung trực của BC) => SKO là cắt tuyến của (OIK)

Xét đường tròn (OIK): Cát tuyến SKO, tiếp tuyến SI => SI2 = SK.SO (Hệ thức lượng trong đường tròn) (2)

Từ (1) và (2) => SM2 = SK.SO => \(\Delta\)SMK ~ \(\Delta\)SOM (c.g.c)

=> ^SMK = ^SOM = 1/2.Sđ(MK của đường tròn (MKO) => MS là tiếp tuyến của đường tròn (MKO)

Hay tiếp tuyến tại M của (MKO) luôn đi qua S cố định (đpcm).

b) Ta có: Tứ giác SIOQ nội tiếp có góc ngoài là ^AIO => ^OQS = ^AIO (*)

Theo câu a: SI= SK.SO => SB2 = SK.SO = SK.R (3)

Kẻ đường kính SN của đường tròn (O), BC cắt OS tại T => ^SBN = 900 

=> \(\Delta\)SBN vuông tại B có đường cao BT => SB2 = ST.SN (Hệ thức lượng). Hay SB2 = ST.2R (4)

Từ (3) và (4) => SK=2.ST => T là trung điểm của SK. Tứ đó: S và K đối xứng với nhau qua BC

Mà I và H cũng đối xứng nhau qua BC nên tứ giác IKSH là hình thang cân

^OSQ = ^IHS = ^IKO =^AIO (=1/2.Sđ(OI của (IKO) ) => ^OSQ = ^AIO (**)

Từ (*) và (**) suy ra: ^OQS = ^OSQ => \(\Delta\)SOQ cân tại O => OS = OQ = R => Q thuộc (O) (đpcm).

c) Xét tứ giác SIOQ nội tiếp đường tròn có: ^OIQ = ^OSQ (Góc nội tiếp cùng chắn cung OQ) 

Lại có: ^OSQ = ^AIO (cmt) nên ^OIQ = ^AIO => IO là tia phân giác của ^AIQ 

Dễ dàng chỉ ra được: IA=IQ (Gợi ý: Hạ OX và OY vuông góc với IA và IQ) => \(\Delta\)AIQ cân tại I

Xét \(\Delta\)AIQ: Cân đỉnh I, tia phân giác IO (cmt) => IO đồng thời là đường cao => IO vuông góc AQ (đpcm).

d) Gọi J là giao điểm của AS với BC, E và F lần lượt là hình chiếu của O lên AC,AB. Đặt AB=c, BC=a, CA=b

Ta có: \(\Delta\)AJC ~ \(\Delta\)ABS (g.g) => AJ.AS = c.b (5)

\(\Delta\)SJB ~ \(\Delta\)SBA (g.g) => SB2 = SJ.AS (6)

Từ (5) và (6) suy ra: c.b + SB2 = AJ.AS + SJ.AS = AS2 < SN2 = 4R2 (Quan hệ giữa đường kính và dây cung)

\(\Rightarrow bc+BT^2+ST^2\le4R^2\)(ĐL Pytagore) \(\Rightarrow bc+\frac{a^2}{4}+\left(R-OT\right)^2\le4R^2\)

\(\Rightarrow bc+\frac{a^2}{4}+R^2-2R.OT+OT^2\le4R^2\)\(\Leftrightarrow bc+\frac{a^2}{4}-2R.OT+OT^2\le3R^2\)

Tương tự: \(ab+\frac{c^2}{4}-2R.OF+OF^2\le3R^2;\)\(ca+\frac{b^2}{4}-2R.OE+OE^2\le3R^2\)

Do đó: \(ab+bc+ca+\frac{a^2+b^2+c^2}{4}-2R\left(OT+OE+OF\right)+OT^2+OE^2+OF^2\le9R^2\)

Áp dụng BĐT: \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\) và \(a^2+b^2+c^2\ge ab+bc+ca\) ta có:

\(ab+bc+ca+\frac{ab+bc+ca}{4}-2R\left(OT+OE+OF\right)+\frac{\left(OT+OE+OF\right)^2}{3}\le9R^2\)

\(\Leftrightarrow\frac{5\left(ab+bc+ca\right)}{4}-2R\left(OT+OE+OF\right)+\frac{\left(OT+OE+OF\right)^2}{3}\le9R^2\)

Áp dụng ĐL Carnot cho \(\Delta\)ABC có tâm ngoại tiếp O: \(OT+OE+OF=R+r\)

Từ đó có: \(\frac{5\left(ab+bc+ca\right)}{4}-2R\left(R+r\right)+\frac{\left(R+r\right)^2}{3}\le9R^2\)

\(\Leftrightarrow\frac{5\left(ab+bc+ca\right)}{4}\le9R^2+2R\left(R+r\right)-\frac{\left(R+r\right)^2}{3}\)

\(\Leftrightarrow\frac{5\left(ab+bc+ca\right)}{4}\le\frac{32R^2+4Rr-r^2}{3}=\frac{\left(4R+r\right)\left(8R-r\right)}{3}\)

\(\Rightarrow ab+bc+ca\le\frac{4\left(4R+r\right)\left(8R-r\right)}{15}\) 

Hay \(AB.BC+BC.CA+CA.AB\le\frac{4\left(4R+r\right)\left(8R-r\right)}{15}\) (đpcm).