K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác OHDC có

góc OHD+góc OCD=180 độ

=>OHDC là tứ giác nội tiếp

b: Xét ΔOIA vuông tạiI và ΔOHD vuông tại H có

góc IOA chung

=>ΔOIA đồng dạng với ΔOHD

=>OI/OH=OA/OD

=>OI*OD=OH*OA

a: góc KOA+góc BOA=90 độ

góc KAO+góc COA=90 độ

mà góc BOA=góc COA

nên góc KOA=góc KAO

=>ΔKAO cân tại K

b: Xét ΔOBA vuông tại B có sin BAO=OB/OA=1/2

nên góc BAO=30 độ

=>góc BOA=60 độ

Xét ΔOBI có OB=OI và góc BOI=60 độ

nên ΔOBI đều

=>OI=OB=1/2OA=R

=>I là trung điểm của OA

ΔKAO cân tại K

mà KI là trung tuyến

nên KI vuông góc với OI

=>KI là tiếp tuyến của (O)

a: Xét tứ giác OMAN có

\(\widehat{OMA}+\widehat{ONA}=90^0+90^0=180^0\)

=>OMAN là tứ giác nội tiếp

=>O,M,A,N cùng thuộc một đường tròn

b: ΔOBN cân tại O

mà OI là đường phân giác

nên OI\(\perp\)BN và OI là đường trung trực của BN

Xét ΔOBI và ΔONI có

OB=ON

\(\widehat{BOI}=\widehat{NOI}\)

OI chung

Do đó: ΔOBI=ΔONI

=>\(\widehat{OBI}=\widehat{ONI}=90^0\)

=>IB là tiếp tuyến của (O)

c: Xét (O) có

AM,AN là tiếp tuyến

=>AM=AN

=>A nằm trên đường trung trực của MN(1)

OM=ON

=>O nằm trên đường trung trực của MN(2)

Từ (1) và (2) suy ra AO là đường trung trực của MN

d: AO là đường trung trực của MN

=>AO cắt MN tại trung điểm của MN

=>K là trung điểm của MN