K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2016

A=1/2^2(1/2^2+1/3^2+...+1/n^2)<1/4[(1/(1.2)+1/(2.3)+...+1/(n-1).n]=1/4(1-1/n) {n lon hon hoac bang 2}. Suy ra 1-1/n<0. Suy ra A<1/4

6 tháng 5 2016

Ta có: 

N = \(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}=\frac{1}{\left(2.2\right)^2}+\frac{1}{\left(2.3\right)^2}+\frac{1}{\left(2.4\right)^2}+...+\frac{1}{\left(2n\right)^2}\)

\(\frac{1}{2^2.2^2}+\frac{1}{2^2.3^2}+\frac{1}{2^2.4^2}+...+\frac{1}{2^2.n^2}=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)

Mà \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}<1\) (lát nữa mình sẽ chứng minh)

=> N <\(\frac{1}{4}.1=\frac{1}{4}\)

6 tháng 5 2016

Ta sẽ chứng minh bổ đề: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}<1\)

Thật vậy:

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)\(1-\frac{1}{n^2}<1\)

8 tháng 3 2016

k nha, câu trả lờii sẽ hiện ra

A=1/4^2+1/6^2+...+1/(2n)^2

=1/4(1/2^2+1/3^2+...+1/n^2)

=>A<1/4(1-1/2+1/2-1/3+...+1/n-1-1/n)

=>A<1/4(1-1/n)<1/4

22 tháng 7 2016

\(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)

\(N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \frac{1}{2^2}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{...1}{\left(n-1\right).n}\right)\)

\(N< \frac{1}{4}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(N< \frac{1}{4}.\left(1-\frac{1}{n}\right)< \frac{1}{4}.1=\frac{1}{4}\)

=> \(N< \frac{1}{4}\)(đpcm)