cho đường tròn (O,R ) qua điểm A thuộc đường tròn , kẻ tiếp tuyến Ax trên đó lấy điểm B sao cho OB=căn hai R , OB cắt đường tròn (o) ở C a, tính sao đo góc ở tâm tạo bởi 2 bán kính OA, OC b, tính số đo các cung AC cửa đường tròn (O)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAO vuông tại A có \(cosAOB=\dfrac{OA}{OB}=\dfrac{1}{\sqrt{2}}\)
=>\(\widehat{AOC}=45^0\)
=>\(sđ\left(OA;OC\right)=45^0\)
b: Số đo cung AC nhỏ là:
\(sđ\stackrel\frown{AC}=45^0\)
Số đo cung AC lớn là:
3600-450=3150
Bạn tự vẽ hình nhé.
Xét tam giác OAC có OA=OC=6
=> Tam giác OAC cân tại O
=> Góc OAC = Góc OCA (1)
Gọi giao điểm của AC và OB là H.
Ta có AC vuông góc với OB
=> HA = HC ( Quan hệ vuông góc giữa đường kính và dây )
Xét tam giác BAH và tam giác BCH có
Góc AHB = Góc CHB = 90 độ
AH = CH
BH chung
Suy ra tam giác BAH = Tam giác BCH ( c.g.c )
=> Góc BAH = Góc BCH (2)
Cộng vế theo vế của (1) và (2) ta được Góc BCO = 90 độ
Vậy BC là tt của (O)
a: Ta có: ΔOAM vuông tại A
=>\(OA^2+AM^2=OM^2\)
=>\(AM^2=\left(2R\right)^2-R^2=3R^2\)
=>\(AM=R\sqrt{3}\)
b: Xét ΔMOA vuông tại A có \(sinMOA=\dfrac{MA}{MO}=\dfrac{\sqrt{3}}{2}\)
nên \(\widehat{MOA}=60^0\)
=>\(\widehat{AON}=60^0\)
=>\(\widehat{\left(ON;OA\right)}=60^0\)
c: Xét (O) có
\(\widehat{AON}\) là góc ở tâm chắn cung AN nhỏ
Do đó: \(sđ\stackrel\frown{AN}_{nhỏ}=\widehat{AON}=60^0\)
Số đo cung lớn AN là:
\(360-60=300^0\)
a, Tính được OB=10cm
b, Ta có ∆OBC = ∆OBA (c.g.c) => BC là tiếp tuyến của đường tròn (O)
là \(\sqrt{2}\)R ko phải R\(\sqrt{2}\)