Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Tính được OB=10cm
b, Ta có ∆OBC = ∆OBA (c.g.c) => BC là tiếp tuyến của đường tròn (O)
Bạn tự vẽ hình nhé.
Xét tam giác OAC có OA=OC=6
=> Tam giác OAC cân tại O
=> Góc OAC = Góc OCA (1)
Gọi giao điểm của AC và OB là H.
Ta có AC vuông góc với OB
=> HA = HC ( Quan hệ vuông góc giữa đường kính và dây )
Xét tam giác BAH và tam giác BCH có
Góc AHB = Góc CHB = 90 độ
AH = CH
BH chung
Suy ra tam giác BAH = Tam giác BCH ( c.g.c )
=> Góc BAH = Góc BCH (2)
Cộng vế theo vế của (1) và (2) ta được Góc BCO = 90 độ
Vậy BC là tt của (O)
OB=căn18
b> Xét 2 tam giác bằng nhau đó là tam giác OAB=BCO là ra 2 góc cần xét
ta có tam giác AOC cân và OH là đường cao nên cũng là đường phân giác =>OAH=HOC
xét 2 tam giác OAB và tam giÁC BCO có OA=OB (bán kính )AOH=HOC(cmt) OB CHUNG => AOB=BCO(C-G-C)=>GÓC OAB=BCO hay OC vuông BC=>...............
AC=3
a/ Xét tam giác MAO và tam giác MCO có
MA = MC
MO chung
AO = AC
=> tam giác MAO = tam giác MCO
\(\Rightarrow\widehat{AOM}=\widehat{COM}\)
\(\Rightarrow OM\) là phân giác \(\widehat{AOC}\) mà tam giác AOC cân tạo O
\(\Rightarrow OM\) là đường cao của tam giác AOC
\(\Rightarrow\)OM vuông góc với AC
b/ Từ câu a ta suy ra được OM vừa là đường cao vừa là đường trung tuyến
\(\Rightarrow\)OM vuông góc AC
Mà NC vuông góc AC
=> OM // NC (1)
ta lại có AI = IC (2)
Từ (1) và (2) => OM là đường trung bình của tam giác ONC
=> M là trung điểm của AN
c/ Ta thấy rằng CH // AN (vì cùng vuông góc AB)
\(\Rightarrow\frac{CK}{MN}=\frac{BK}{BM}=\frac{KH}{AM}\)
Mà MN = AM nên => CK = KH
Vậy K là trung điểm của CH
1: Ta có \(\widehat{KAO}=\widehat{KMO}=90^o\) nên tứ giác KAOM nội tiếp.
2: Theo hệ thức lượng trong tam giác vuông ta có \(OI.OK=OA^2=R^2\)
3: Phần thuận: Dễ thấy H thuộc KI.
Ta có \(\widehat{AHO}=90^o-\widehat{HAI}=\widehat{AMK}=\widehat{AOK}\) nên tam giác AHO cân tại A.
Do đó AH = AO = R.
Suy ra H thuộc (A; R) cố định.
Phần đảo cm tương tự.
Vậy...
a: Xét tứ giác KAOM có
\(\widehat{KAO}+\widehat{KMO}=180^0\)
Do đó: KAOM là tứ giác nội tiếp
b: Xét (O) có
KA là tiếp tuyến
KM là tiếp tuyến
Do đó: KA=KM
hay K nằm trên đường trung trực của AM(1)
Ta có: OA=OM
nên O nằm trên đường trung trực của AM(2)
Từ (1) và (2) suy ra OK là đường trung trực của AM
hay OK\(\perp\)AM
Xét ΔOAK vuông tại A có AI là đường cao
nên \(OI\cdot OK=OA^2\)