K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2017

a, Tính được OB=10cm

b, Ta có ∆OBC = ∆OBA (c.g.c) => BC là tiếp tuyến của đường tròn (O)

25 tháng 10 2016

Bạn tự vẽ hình nhé.

Xét tam giác OAC có OA=OC=6
=> Tam giác OAC cân tại O
=> Góc OAC = Góc OCA (1)

Gọi giao điểm của AC và OB là H.
Ta có AC vuông góc với OB
=> HA = HC ( Quan hệ vuông góc giữa đường kính và dây )
Xét tam giác BAH và tam giác BCH có
Góc AHB = Góc CHB = 90 độ
AH = CH
BH chung
Suy ra tam giác BAH = Tam giác BCH ( c.g.c )
=> Góc BAH = Góc BCH (2)

Cộng vế theo vế của (1) và (2) ta được Góc BCO = 90 độ
Vậy BC là tt của (O)

25 tháng 12 2016

OB=căn18

b>  Xét 2 tam giác bằng nhau đó là tam giác OAB=BCO là ra 2 góc cần xét 

ta có tam giác AOC cân và OH là đường cao nên cũng là đường phân giác =>OAH=HOC

xét 2 tam giác OAB và tam giÁC BCO có OA=OB (bán kính )AOH=HOC(cmt) OB CHUNG => AOB=BCO(C-G-C)=>GÓC OAB=BCO hay OC vuông BC=>...............

AC=3

28 tháng 11 2016

O A B C N M H K I

a/ Xét tam giác MAO và tam giác MCO có

MA = MC

MO chung

AO = AC

=> tam giác MAO = tam giác MCO

\(\Rightarrow\widehat{AOM}=\widehat{COM}\)

\(\Rightarrow OM\) là phân giác \(\widehat{AOC}\) mà tam giác AOC cân tạo O

\(\Rightarrow OM\) là đường cao của tam giác AOC

\(\Rightarrow\)OM vuông góc với AC

b/ Từ câu a ta suy ra được OM vừa là đường cao vừa là đường trung tuyến

\(\Rightarrow\)OM vuông góc AC

Mà NC vuông góc AC

=> OM // NC (1)

ta lại có AI = IC (2)

Từ (1) và (2) => OM là đường trung bình của tam giác ONC

=> M là trung điểm của AN

c/ Ta thấy rằng CH // AN (vì cùng vuông góc AB)

\(\Rightarrow\frac{CK}{MN}=\frac{BK}{BM}=\frac{KH}{AM}\)

Mà MN = AM nên => CK = KH

Vậy K là trung điểm của CH

14 tháng 3 2021

1: Ta có \(\widehat{KAO}=\widehat{KMO}=90^o\) nên tứ giác KAOM nội tiếp.

2: Theo hệ thức lượng trong tam giác vuông ta có \(OI.OK=OA^2=R^2\)

3: Phần thuận: Dễ thấy H thuộc KI.

Ta có \(\widehat{AHO}=90^o-\widehat{HAI}=\widehat{AMK}=\widehat{AOK}\) nên tam giác AHO cân tại A.

Do đó AH = AO = R.

Suy ra H thuộc (A; R) cố định.

Phần đảo cm tương tự.

Vậy...

a: Xét tứ giác KAOM có 

\(\widehat{KAO}+\widehat{KMO}=180^0\)

Do đó: KAOM là tứ giác nội tiếp

b: Xét (O) có

KA là tiếp tuyến

KM là tiếp tuyến

Do đó: KA=KM

hay K nằm trên đường trung trực của AM(1)

Ta có: OA=OM

nên O nằm trên đường trung trực của AM(2)

Từ (1) và (2) suy ra OK là đường trung trực của AM

hay OK\(\perp\)AM

Xét ΔOAK vuông tại A có AI là đường cao

nên \(OI\cdot OK=OA^2\)