K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2021

a: Xét tứ giác ABEC có

M là trung điểm của BC

M là trung điểm của AE

Do đó: ABEC là hình bình hành

11 tháng 9 2017

a. tam giác ABC có AM=MC và BN=NC => MN là đg TB của ABC => MN//AB => AMNB là hình thang ( k thể là Hình bình hành được )

b. D là điểm đối xứng với B qua M =>BM=MD

Tứ giác ABCD có AM=MC và BM=MD => 2 đg chéo cắt nhau tại trung điểm của mỗi đường 

=> ABCD là HBH

c. E đối xứng với A qua N => AN=NE

ABEC có BN=NC và AN=NE => ABEC là HBH ( CMTT như câu b )

28 tháng 12 2020

a) Xét tứ giác ABEC có 

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo AE(A và E đối xứng nhau qua M)

Do đó: ABEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành ABEC có \(\widehat{CAB}=90^0\)(ΔABC vuông tại A)

nên ABEC là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Vì D đối xứng với M qua AB(gt)

nên AB là đường trung trực của DM

⇔AB vuông góc với DM tại trung điểm của DM

mà AB cắt DM tại H(gt)

nên H là trung điểm của DM và MH⊥AB tại H

Ta có: MH⊥AB(cmt)

AC⊥AB(ΔABC vuông tại A)

Do đó: MH//AC(Định lí 1 từ vuông góc tới song song)

hay MD//AC

Ta có: H là trung điểm của MD(cmt)

nên \(MH=\dfrac{1}{2}\cdot MD\)(1)

Xét ΔABC có 

M là trung điểm của BC(gt)

MH//AC(cmt)

Do đó: H là trung điểm của AB(Định lí 1 đường trung bình của tam giác)

Xét ΔABC có 

M là trung điểm của BC(gt)

H là trung điểm của AB(cmt)

Do đó: MH là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

\(MH=\dfrac{1}{2}\cdot AC\)(Định lí 2 đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra AC=MD

Xét tứ giác ACMD có 

AC//MD(cmt)

AC=MD(cmt)

Do đó: ACMD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

a: Xét tứ giác ABEC có 

M là trung điểm của đường chéo BC

M là trung điểm của đường chéo AE

Do đó: ABEC là hình bình hành

mà \(\widehat{CAB}=90^0\)

nên ABEC là hình chữ nhật

a: Xét tứ giác AMCN có

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

b: ABCDlà hình bình hành

nên AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm của AC

AMCN là hình bình hành

nên AC cắt MN tại trung điểm của mỗi đường

=>M đối xứng N qua O

a: Xét tứ giác ADCM có 

N là trung điểm của AC
N là trung điểm của DM

Do đó: ADCM là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên ADCM là hình chữ nhật