tìm m thuộc z sao cho phương trình ko có nghiệm nguyên : x^2-(m+4)x +(4m-2)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Bạn tự giải
b. Pt có nghiệm kép khi:
\(\Delta'=\left(m+1\right)^2-4m=0\Leftrightarrow m^2-2m+1=0\Leftrightarrow m=1\)
Khi đó: \(x_{1,2}=m+1=2\)
c. Do pt có nghiệm bằng 4:
\(\Rightarrow4^2-2\left(m+1\right).4+4m=0\)
\(\Leftrightarrow8-4m=0\Rightarrow m=2\)
\(x_1x_2=4m\Rightarrow x_2=\dfrac{4m}{x_1}=\dfrac{4.2}{4}=2\)
a) PT có 2 nghiệm dương
\(\Leftrightarrow\hept{\begin{cases}\Delta'>0\\P>0\\S>0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(m+3\right)^2-\left(4m-1\right)\ge0\\4m-1>0\\2\left(m+3\right)>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m^2+2m+10\ge0\\m>\frac{1}{4}\\m>-3\end{cases}}}\)
\(\Leftrightarrow m>\frac{1}{4}\)
b) vì \(\Delta'>0\)nên PT đã cho luôn có hai nghiệm x1,x2 với mọi m.
Áp dụng hệ thức Vi-et,ta có :
\(\hept{\begin{cases}S=2\left(m+3\right)\\P=4m-1\end{cases}}\Leftrightarrow\hept{\begin{cases}2S=4m+12\\P=4m-1\end{cases}}\)
\(\Leftrightarrow2S-P=13\Leftrightarrow2\left(x_1+x_2\right)-x_1x_2=13\)
\(\Delta=b^2-4ac=\left(m+4\right)^2-4\left(4m-2\right)=m^2+8m+16-16m+8=m^2-8m+24=\left(m-4\right)^2+8\)
đúng ko
hình như ko rùi