Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\left(x^2+2\right)=5\sqrt{x^3+1}\left(1\right)\)
\(\text{ĐKXĐ}:x^3+1\ge0\Leftrightarrow x\ge-1\)
(*) <=> 4(x2 + 2)2 = 25( x3 + 1 )
<=> 4( x4 + 4x2 + 4 ) = 25(x3 + 1)
<=> 4x4 + 16x2 + 16 = 25x3 + 25
<=> 4x4 - 25x3 + 16x2 - 9 = 0
<=> 4x4 - 5x3 - 20x3 + 3x2 + 25x2 - 12x2 + 15x - 15x - 9 = 0
<=> 4x4 - 5x3 + 3x2 - 20x3 + 25x2 - 15x - 12x2 + 15x - 9 = 0
<=> x2( 4x2 - 5x + 3 ) - 5x( 4x2 - 5x + 3 ) - 3(4x2 - 5x + 3 ) = 0
<=> ( x2 - 5x - 3)( 4x2 - 5x + 3 ) = 0
tới đây delta hoặc vi-ét thì tùy
\(\Leftrightarrow x=\frac{5+\sqrt{37}}{2}\)
\(\Leftrightarrow x=\frac{5-\sqrt{37}}{2}\)
4. \(\sqrt{x}+\sqrt{y}=6\sqrt{55}\)
\(6\sqrt{55}\) là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa \(\sqrt{55}\)
Đặt \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\) với \(a,b\in N\)
\(\Rightarrow a+b=6\)
Xét các TH:
a = 0 => b = 6
a = 1 => b = 5
a = 2 => b = 4
a = 3 => b = 3
a = 4 => b = 2
a = 5 => b = 1
a = 6 => b = 0
Từ đó dễ dàng tìm đc x, y