Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=\left(n+4\right)^2-4\left(4n-25\right)=n^2+8n+16-16n+100=n^2-8n+116>0\)
Vì hệ số của x2 là 1 nên để PT có nghiệm nguyên thì \(n^2-8n+116\) là số chính phương.
Giả sử \(n^2-8n+116=a^2\Rightarrow a^2-\left(n-4\right)^2=100\Rightarrow\left(a-n+4\right)\left(a+n-4\right)=100\)
Xét các ước của 100 và chú ý: a + n - 4 > a - n + 4. Từ đó tìm ra n.
Giả sử pt có 2 nghiệm, theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-n\\x_1x_2=2m+3n-1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_1+x_2=-1\\x_1^2+x_2^2=13\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-1\\\left(x_1+x_2\right)^2-2x_1x_2=13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-1\\x_1x_2=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m-n=-1\\2m+3n-1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n=-1\\m=-1\end{matrix}\right.\)
\(\Delta=\left(-m+3\right)^2-4\cdot\left(-5\right)=m^2-6m+9+20=m^2-6m+29=\left(m-3\right)^2+20>0\)
=>Phương trình có hai nghiệm phân biệt
\(\Leftrightarrow m-3\in Z\Leftrightarrow m\in Z\)
\(\Delta'=9-\left(2n-3\right)>0\Leftrightarrow n< 6\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=2n-3\end{matrix}\right.\)
Do \(x_1;x_2\) là nghiệm nên:
\(\left\{{}\begin{matrix}x_1^2-6x_1+2n-3=0\\x_2^2-6x_2+2n-3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1^2-5x_1+2n-4=x_1-1\\x_2^2-5x_2+2n-4=x_2-1\end{matrix}\right.\)
Thay vào bài toán:
\(\left(x_1-1\right)\left(x_2-1\right)=-4\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+5=0\)
\(\Leftrightarrow2n-3-6+5=0\Leftrightarrow n=2\)
\(\text{đen ta }=\left(n+4\right)^2-4\left(4n-25\right)=n^2+116\text{ là số chính phương}\)
đến đây thì là 1 bài đơn giản