Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để pt trên có 2 nghiệm pb thì \(\Delta'>0\)
<=> \(m^2+6m+9-4m-12>0\)
<=>\(m^2+2m-3>0\)
<=>\(\left(m-1\right)\left(m+3\right)>0\)
<=>\(\left[{}\begin{matrix}m>1\\m< -3\end{matrix}\right.\)
cho \(x_1,x_2\) là 2 nghiệm của pt và \(x_1< x_2\)
cần chứng minh \(x_1>-1\)
<=>\(-m-3-\sqrt{m^2+2m-3}>-1\)
<=>\(\sqrt{m^2+2m-3}>m+2\)
<=>\(\left[{}\begin{matrix}m^2+2m-3>m^2+4m+4\\m^2+2m-3>-m^2-4m-4\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}2m+7< 0\\2m^2+6m+1>0\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}m< \dfrac{-7}{2}\\m>\dfrac{-3+\sqrt{7}}{2}\\m< \dfrac{-3-\sqrt{7}}{2}\end{matrix}\right.\)
so với điều kiện ở đè bài =>\(m< \dfrac{-7}{2}\)thỏa yêu câu đề bài
KL: để pt có 2 nghiệm pb đều lớn hơn -1 thì \(m< \dfrac{-7}{2}\)
\(\Delta'=\left(m+3\right)^2-\left(4m+12\right)=m^2+2m-3>0\Rightarrow\left[{}\begin{matrix}m>1\\m< -3\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+3\right)\\x_1x_2=4m+12\end{matrix}\right.\)
Pt có 2 nghiệm lớn hơn -1 khi: \(-1< x_1< x_2\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_2+1>0\\x_1+x_2>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4m+12-2\left(m+3\right)+1>0\\-2\left(m+3\right)>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{7}{2}\\m< -2\end{matrix}\right.\) \(\Rightarrow-\dfrac{7}{2}< m< -2\)
Kết hợp điều kiện ban đầu \(\Rightarrow-\dfrac{7}{2}< m< -3\)
Lời giải:
Đặt $x^2+2x=t$ thì $t=(x+1)^2-1\geq -1$
PT ban đầu trở thành: $t^2-4mt+3m+1=0(*)$
Ta cần tìm $m$ để $(*)$ có nghiệm $t\geq -1$
Điều này xảy ra khi:
\(\left\{\begin{matrix} \Delta'=4m^2-3m-1\geq 0\\ t_1+t_2\geq -2\\ (t_1+1)(t_2+1)\geq 0 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (m-1)(4m+1)\geq 0\\ 4m\geq -2\\ t_1t_2+(t_1+t_2)+1=3m+1+4m+1\geq 0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} m\geq 1 \text{ hoặc } m\leq \frac{-1}{4}\\ m\geq \frac{-1}{2}\\ m\geq \frac{-2}{7}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m\geq 1\\ \frac{-2}{7}\leq m\leq \frac{-1}{4}\end{matrix}\right.\)
a.
Pt có 2 nghiệm pb khi:
\(\left\{{}\begin{matrix}m+1\ne0\\\Delta'=\left(m+3\right)^2-\left(m+1\right)\left(-m+2\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\2m^2+7m+7>0\left(\text{luôn đúng}\right)\end{matrix}\right.\)
\(\Rightarrow m\ne-1\)
b.
BPT vô nghiệm khi \(\left(m^2-4m-5\right)x^2+2\left(m-5\right)-1< 0\) nghiệm đúng với mọi x
- Với \(m=-1\) ko thỏa mãn
- Với \(m=5\) thỏa mãn
- Với \(m\ne\left\{-1;5\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}m^2-4m-5< 0\\\Delta'=\left(m-5\right)^2+m^2-4m-5< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1< m< 5\\\left(m-5\right)\left(2m-4\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1< m< 5\\2< m< 5\end{matrix}\right.\) \(\Rightarrow2< m< 5\)
Kết hợp lại ta được: \(2< m\le5\)