C/m: 1/5+1/13+1/25+.....+1/99^2+100^2 < 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a) dễ, tự làm :)))
b) \(B=2^{100}-2^{99}-2^{98}-...-2^2-2^1-1.\)
\(\Rightarrow B=2^{100}-\left(2^{99}+2^{98}+2^{97}+...+2^2+2^1+1\right).\)
Đặt: \(M=2^{99}+2^{98}+2^{97}+...+2^2+2^1+1.\)
\(\Rightarrow2M=2\left(2^{99}+2^{98}+2^{97}+...+2^2+2^1+1\right).\)
\(\Rightarrow2M=2^{100}+2^{99}+2^{98}+...+2^3+2^2+2^1.\)
\(\Rightarrow2M-M=\left(2^{100}+2^{99}+2^{98}+...+2^3+2^2+2^1\right)-\left(2^{99}+2^{98}+2^{97}+...+2^2+2^1+1\right).\)
\(\Rightarrow M=2^{100}-1.\)
Ta có: \(B=2^{100}-\left(2^{99}+2^{98}+2^{97}+...+2^2-2^1-2\right).\)
\(\Rightarrow B=2^{100}-\left(2^{100}-1\right).\)
\(\Rightarrow B=\left(2^{100}-2^{100}\right)+1.\)
\(\Rightarrow B=1.\)
Vậy..........
Bài 2:
a) \(\left(x-1\right)\left(x-5\right)< 0.\)
\(\Rightarrow x-1\) và \(x-5\) trái dấu.
mà \(x-1>x-5.\)
\(\Rightarrow\left[{}\begin{matrix}x-1>0.\\x-5< 0.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>1.\\x< 5.\end{matrix}\right.\Leftrightarrow1< x< 5.\)
mà \(x\in Z.\)
\(\Rightarrow x\in\left\{2;3;4\right\}.\)
Vậy..........
b) \(\left(x^2-25\right)\left(x^2-5\right)< 0.\)
\(\Rightarrow x^2-25\) và \(x^2-5\) trái dấu.
mà \(x^2-25< x^2-5.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-25< 0.\\x^2-5>0.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2< 25.\\x^2>5.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< 5.\\x>\sqrt{5}\left(loại\right).\end{matrix}\right.\Rightarrow x< 5.\)
Vậy..........
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng \(\frac{a}{b}>1\Leftrightarrow\frac{a+m}{b+m}< \frac{a}{b}< \frac{a-m}{b-m}\) (a;b;m \(\in\) N*) ta có:
\(S=\frac{2}{1}.\frac{4}{3}.\frac{6}{5}.\frac{8}{7}.\frac{10}{9}...\frac{100}{99}\)
=> \(\frac{2}{1}.\frac{4}{3}.\frac{6}{5}.\frac{9}{8}.\frac{11}{10}....\frac{101}{100}< S< \frac{2}{1}.\frac{4}{3}.\frac{6}{5}.\frac{8}{7}.\frac{9}{8}...\frac{99}{98}\)
\(\Rightarrow\left(\frac{2}{1}.\frac{4}{3}.\frac{6}{5}\right)^2.\frac{8}{7}.\frac{9}{8}.\frac{10}{9}.\frac{11}{10}...\frac{100}{99}.\frac{101}{100}\) < S2 \(< \left(\frac{2}{1}.\frac{4}{3}.\frac{6}{5}.\frac{8}{7}\right)^2.\frac{9}{8}.\frac{10}{9}...\frac{99}{98}.\frac{100}{99}\)
=> \(\left(\frac{16}{5}\right)^2.\frac{101}{7}\) < S2 < \(\left(\frac{128}{35}\right)^2.\frac{100}{8}\)
=> 147 < S2 < 167
=> 144 < S2 < 169
=> 122 < S2 < 132
=> 12 < S < 13 (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
C=\(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
=\(\frac{1}{100}-\left(\frac{1}{2.1}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
=\(\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
=\(\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
=\(\frac{1}{100}-\frac{99}{100}\)
=\(\frac{-98}{100}=\frac{-49}{50}\)
C=1/100 -1/100.99 -1/99.98 -1/98.97-......- 1/3.2 -1/2.1
= 1/100 - (1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1)
Đặt A = 1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1 => C = 1/100 - A
Dễ thấy 1/2.1 = 1/1 - 1/2
1/3.2 = 1/2 - 1/3
.....................
1/99.98 = 1/98 - 1/99
1/100.99 = 1/99 - 1/100
=> cộng từng vế với vế ta
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
5; (-23) + 105
= 105 - 23
= 82
6; 78 + (-123)
= 78 - 123
= - (123 - 78)
= - 45
bài1
1)2763 + 152 = 2915
2)-7 +(-14)
=-(14 +7)
=-21