Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ ta co : 1/2<2/3 ; 3/4<4/5 ; 5/6<6/7 ;.......;99/100<100/101
=> A<B
Vi A<B nen A.A<A.B
2/ Vi A<B ( theo cau a) nen A.A<A.B=1/101
A.B<1/101 MA 1/101<1/100
=> A.B<1/100
A.A<1/10*1/10 . A<1/10
c) Đặt \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
Ta có: \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
\(\Leftrightarrow3A=3\cdot\left(1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\right)\)
\(\Leftrightarrow3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+99\cdot100\cdot\left(101-98\right)\)
\(\Leftrightarrow3\cdot A=1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-2\cdot3\cdot4+...+98\cdot99\cdot100-98\cdot99\cdot100+99\cdot100\cdot101\)
\(\Leftrightarrow3\cdot A=99\cdot100\cdot101\)
\(\Leftrightarrow A=33\cdot100\cdot101=333300\)
b) Ta có: \(1+2-3-4+...+97+98-99-100\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(97+98-99-100\right)\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)
\(=-4\cdot25=-100\)
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)
\(\Rightarrow A< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)
\(\Rightarrow A^2< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}.\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)
\(\Rightarrow A^2< \frac{1}{101}< \frac{1}{100}=\frac{1}{10^2}\)
\(\Leftrightarrow A< \frac{1}{10}\)
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)
\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\)
\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}.\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)
\(\Rightarrow A^2>\frac{1}{200}>\frac{1}{225}=\frac{1}{15^2}\)
\(\Rightarrow A>\frac{1}{15}\)
Vì
\(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};...;\frac{99}{100}< \frac{100}{101}\)
\(\Rightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)
\(\Rightarrow a< b\)
Để chứng minh A<1/10 thì ta chứng minh A<2/3.4/5.6/7....100/101
Để chứng minh A>1/15 thì ta chứng minh A>1/2.2/3.4/5.98/99