K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2016

vì \(\left(x+2y\right)^2+\left(y-1\right)^2+\left(x-z\right)^2=0\Leftrightarrow\)

       \(\left(x+2y\right)^2=0\Leftrightarrow x+2y=0\Leftrightarrow x=2y\left(1\right)\)

       \(\left(y-1\right)^2=0\Leftrightarrow y-1=0\Leftrightarrow y=1\left(2\right)\)

          \(\left(x-z\right)^2=0\Leftrightarrow x-z=0\Leftrightarrow x=z\left(3\right)\)

 \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow2y=x=y=2\left(4\right)\)

                      \(\left(4\right)\Leftrightarrow A=2+2+3\times2=10\)

                        

Ta có : \(\left(x+2y\right)^2+\left(y-1\right)^2+\left(x-z\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}y-1=0\\x+2y=0\\x-z=0\end{cases}\Rightarrow\hept{\begin{cases}y=1\\x+2.1=0\\x-z=0\end{cases}\Rightarrow}\hept{\begin{cases}y=1\\x=-3\\\left(-3\right)-z=0\end{cases}\Rightarrow}\hept{\begin{cases}y=1\\x=-3\\z=-3\end{cases}}}\)

Ta có : \(\hept{\begin{cases}y=1\\x=-3\\z=-3\end{cases}}\)

Bạn thế vào : \(x+2y+3z\)là ra thôi 

8 tháng 8 2016

giải giúp mình nha 

15 tháng 2 2020

B1 : a/ (x + y)+(x - y)

= x + y + x - y

= ( x+ x ) + ( y - y )

= 2x + 0

= 2x

b/(x + y)-(x - y)

= x + y - x + y

= ( x - x ) +  ( y + y)

= 0 + 2y

= 2y

B2 : Lát nx nhé ( chx nghĩ ra :))))

a: A=(-x)^3+3*(-x)^2*2+3*(-x)*2^2+2^3=(-x+2)^3

=(28+2)^3=30^3=27000

b: \(C=\left(x+2y-2\right)^3=\left(20+2\cdot9-2\right)^3\)

=36^3

c: 11^3-1

=(11-1)(11^2+11+1)

=10*(121+12)

=1330

d: x^3-y^3=(x-y)^3+3xy(x-y)

=6^3+3*6*9

=216+162

=378

8 tháng 10 2020

x2 + 2y2 + z2 - 2xy - 2y - 4z + 5 = 0

<=> ( x2 - 2xy + y2 ) + ( y2 - 2y + 1 ) + ( z2 - 4z + 4 ) = 0

<=> ( x - y )2 + ( y - 1 )2 + ( z - 2 )2 = 0

Vì \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-1\right)^2\ge0\\\left(z-2\right)^2\ge0\end{cases}}\forall x;y;z\)=> ( x - y )2 + ( y - 1 )2 + ( z - 2 )2\(\ge\)0\(\forall\)x ; y ; z

Dấu "=" xảy ra <=>\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z-2\right)^2=0\end{cases}}\)<=>\(\hept{\begin{cases}x=y=1\\z=2\end{cases}}\)( 1 )

Thay ( 1 ) vào A , ta được :

\(A=\left(1-1\right)^{2020}+\left(1-2\right)^{2020}+\left(2-3\right)^{2020}=0+1+1=2\)

Vậy A = 2

8 tháng 10 2020

Ta có: \(x^2+2y^2+z^2-2xy-2y-4z+5=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(z^2-4z+4\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2+\left(z-2\right)^2=0\)

Mà \(VT\ge0\left(\forall x,y,z\right)\) nên dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y=1\\z=2\end{cases}}\)

\(\left|x-2\right|+\left|y-1\right|+\left(x+y-z-2\right)^{2022}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y-1=0\\x+y-z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\\z=1\end{matrix}\right.\)

\(A=5\cdot2^2\cdot1^{2020}\cdot1^{2021}=20\)

16 tháng 9 2023

a) Để A có nghĩa, mẫu số của biểu thức phải khác 0. Vì vậy, ta cần giải phương trình: x^2y - xy^2 + y^2z - yz^2 + z^2x - zx^2 ≠ 0 b) Để tính giá trị của A khi x = -1/2, y = 5/2 và z = 8, ta thay các giá trị này vào biểu thức và tính toán: A = (-1/2)^3(5/2) - (-1/2)(5/2)^3 + (5/2)^3(8) - (5/2)(8)^3 + (8)^3(-1/2) - (8)(-1/2)^2 / (-1/2)^2(5/2) - (-1/2)(5/2)^2 + (5/2)^2(8) - (5/2)(8)^2 + (8)^2(-1/2) - (8)(-1/2)^2 Sau khi tính toán, ta sẽ có giá trị của A. Lưu ý: Để tính toán đúng, hãy chắc chắn rằng bạn đã sử dụng các giá trị x, y, z đúng và thực hiện các phép tính đúng theo thứ tự ưu tiên.

\(\dfrac{x+2y}{4x-3y}=-2\)

=>x+2y=-8x+6y

=>9x=4y

hay x/y=4/9