Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3}{x+y}=\frac{2}{y+z}=\frac{1}{x+z}=\frac{3+2+1}{x+y+y+z+x+z}=\frac{6}{2\left(x+y+z\right)}=\frac{3}{x+y+z}\)
\(\Rightarrow x+y=x+y+z\) \(\Rightarrow z=0\)
\(\Rightarrow P=\frac{2x+2y+2019z}{x+y-2020z}=\frac{2\left(x+y\right)+2019\cdot0}{x+y-2020\cdot0}=\frac{2\left(x+y\right)}{x+y}=2\)
Vậy P = 2
a: C=A-B
\(=5x^3+y^3-3x^2y+4xy^2-4x^3+6x^2y-xy^2\)
\(=x^3+3x^2y+3xy^2+y^3\)
D=A+B
\(=5x^3+y^3-3x^2y+4xy^2+4x^3-6x^2y+xy^2\)
\(=9x^3-9x^2y+5xy^2+y^3\)
bậc của C là 3
bậc của D là 3
b: Thay x=0 và y=-2 vào D, ta được:
\(D=9\cdot0^3-9\cdot0^2\left(-2\right)+5\cdot0\cdot\left(-2\right)^2+\left(-2\right)^3\)
\(=0-0+0-8=-8\)
c: Thay x=-1 và y=-1 vào C, ta được:
\(C=\left(-1\right)^3+3\cdot\left(-1\right)^2\cdot\left(-1\right)+3\cdot\left(-1\right)\cdot\left(-1\right)^2+\left(-1\right)^3\)
=-8
1: \(M=0\)
mà \(\left\{{}\begin{matrix}\left(x-2021\right)^{2022}>=0\\\left(2021-y\right)^{2020}>=0\end{matrix}\right.\)
nên x-2021=0 và 2021-y=0
=>x=2021 và y=2021
\(\left(x-2\right)^4+\left(2y-1\right)^{2022}< =0\)
mà \(\left(x-2\right)^4+\left(2y-1\right)^{2022}>=0\forall x,y\)
nên \(\left\{{}\begin{matrix}x-2=0\\2y-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)
\(M=11xy^2+4xy^2=15xy^2=15\cdot2\cdot\left(\dfrac{1}{2}\right)^2=\dfrac{15}{2}\)
\(Q=-5\cdot\left(-1\right)^2+2\cdot3+2021=2027-5=2022\)
( x - 1 )2018 + (y - 2 )2020+(z-3)2022=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)
\(A=\dfrac{1}{9}\left(-x\right)^{2021}y^2z^3=\dfrac{1}{3}\left(-1\right)^{2021}.2^2.3^3=\dfrac{1}{3}.\left(-1\right).4.27=-36\)
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn.
\(\left|x-2\right|+\left|y-1\right|+\left(x+y-z-2\right)^{2022}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y-1=0\\x+y-z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\\z=1\end{matrix}\right.\)
\(A=5\cdot2^2\cdot1^{2020}\cdot1^{2021}=20\)