Bài này không mang tính chất hỏi, mà là ra câu hỏi cho các bạn lớp 7 thử làm nâng cao :Đ Còn các bạn lớp 8 làm cũng không sao ^^. Không search mạng nhen =))
A= x^2 + 2x + 2xy + 2y^2 + 4y + 2021
Tìm giá trị nhỏ nhất của A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$A=x^2+2x+2xy+2y^2+4y+2021$
$=(x^2+2xy+y^2)+2x+y^2+4y+2021$
$=(x+y)^2+2(x+y)+1+(y^2+2y+1)+2019$
$=(x+y+1)^2+(y+1)^2+2019\geq 2019$
Vậy $A_{\min}=2019$ khi $x+y+1=y+1=0$
$\Leftrightarrow (x,y)=(0,-1)$
Dựa theo dạng này
\(A=x^2+2x\left(y+1\right)+\left(y+1\right)^2-\left(y+1\right)^2+2y^2-4y+2028\)
\(=\left(x+y+1\right)^2-y^2-2x-1+2y^2-4y+2028\)
\(=\left(x+y+1\right)^2-6x+y^2+2027\)
\(=\left(x+y+1\right)+\left(y-3\right)^2+2018\ge2018\forall x;y\) (do...)
=> MinA = 2018 \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\)
1+2+3+4+5+6=768-760+15-1-1
cái này có thể làm rất nhiều cách
A= x^2 + 2x + 2xy + 2y^2 + 4y + 2021
<=>A=x^2+2x+2xy+y^2+y^2+2y+2y+2019+1+1
<=>A=(x^2+2xy+y^2)+(y^2+2y+1)+(2x+2y)+2019+1
<=>A=(x+y)^2+2(x+y)+1+(y+1)^2+2019
<=>A=(x+y+1)^2+(y+1)^2+2019
Vì: (x+y+1)^2 + (y+1)^2 > 0
=>(x+y+1)^2+(y+1)^2+2019 > 2019
Dấu "=" xảy ra khi và chỉ khi:
\(\orbr{\begin{cases}x+y+1=0\\y+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x+y+1=0\\y=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+\left(-1\right)+1=0\\y=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+0=0\\y=-1\end{cases}}}\)<=> x=0;y=-1
Vậy Amin=2019 khi x=0;y=-1
A= x^2 + 2x + 2xy + 2y^2 - 4y + 2021 xin loi loi telex chu nhung nghi de nhu nay
<=>A=x^2+2x+2xy+y^2+y^2-6y+2y+2021-9-1+9+1
<=>A=(x^2+2xy+y^2)+(2x+2y)+1+(y^2-6y+9)+2021-10
<=>A=(x+y)^2+2(x+y)+1+(y-3)^2+2011
<=>A=[(x+y)^2+2(x+y)+1)+(y+3)^2+2011
<=>A=(x+y+1)^2+(y+3)^2+2011
Dau "=" xay ra khi va chi khi:
y+3=0=>y=-3
Thay y=-3 vao x+y+1=0
Ta co: x+y+1=0=> x+-3+1=0=>x-2=0=>x=2
Vay Amin=2011 kgi x=2;y=-3