chứng minh rằng các tổng sau lớn hơn 1 :
a; 3/8 + 3/15 + 3/7
b; 19/60 +29/100 +39/150 + 49/300
c;41/90 + 31/72 + 21/40 + -11/45 + -1/36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) M = \(\frac{3}{8}+\frac{3}{15}+\frac{3}{7}\)
= 3 x( \(=\frac{1}{8}+\frac{1}{15}+\frac{1}{7}\) )
= 3 x \(\frac{105+56+120}{8x15x7}\)
= 3 x \(\frac{281}{3x5x8x7)\
= \(\frac{281}{280}\) > 1
Phần b tương tự nha !!
Làm luôn nhé
\(A=\frac{3}{8}+\frac{1}{5}+\frac{5}{6}>\frac{1}{6}+\frac{5}{6}=1\)
\(A=\frac{3}{8}+\frac{1}{5}+\frac{5}{6}< \frac{3}{8}+\frac{1}{4}+\frac{5}{4}=\frac{3}{8}+\frac{2}{8}+\frac{10}{8}=\frac{15}{8}< \frac{16}{8}=2\)
Vậy 1<A<2
\(B=\frac{5}{11}+\frac{5}{12}+\frac{5}{13}+\frac{5}{14}>\frac{5}{14}.4=\frac{10}{7}>1\)
\(B=\frac{5}{11}+\frac{5}{12}+\frac{5}{13}+\frac{5}{14}< \frac{5}{10}.4=2\)
Vậy 1<B<2
a: Ta có
A = \(\dfrac{1}{10}\) + \((\dfrac{1}{11}\) + \(\dfrac{1}{12}\) + ...+ \(\dfrac{1}{100}\)\()\)
⇒ A > \(\dfrac{1}{10}\) + \((\dfrac{1}{100}\) + \(\dfrac{1}{100}\) + ...+ \(\dfrac{1}{100}\)\()\)90 số hạng
⇒ A > \(\dfrac{1}{10}\) + \(\dfrac{90}{100}\)
⇒ A > 1
vậy A > 1
b: ta có
S = (\(\dfrac{1}{21}\) + \(\dfrac{1}{22}\)+ \(\dfrac{1}{23}\) + \(\dfrac{1}{24}\) + \(\dfrac{1}{25}\))+(\(\dfrac{1}{26}\) + \(\dfrac{1}{27}\)+ \(\dfrac{1}{28}\) + \(\dfrac{1}{29}\) + \(\dfrac{1}{30}\))+(\(\dfrac{1}{31}\) + \(\dfrac{1}{32}\)+ \(\dfrac{1}{33}\) + \(\dfrac{1}{34}\) + \(\dfrac{1}{35}\))
⇒ S > (\(\dfrac{1}{25}\) + \(\dfrac{1}{25}\)+ \(\dfrac{1}{25}\) + \(\dfrac{1}{25}\) + \(\dfrac{1}{25}\))+(\(\dfrac{1}{30}\) + \(\dfrac{1}{30}\)+ \(\dfrac{1}{30}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{30}\))+(\(\dfrac{1}{35}\) + \(\dfrac{1}{35}\)+ \(\dfrac{1}{35}\) + \(\dfrac{1}{35}\) + \(\dfrac{1}{35}\))
⇔ S > \(\dfrac{5}{25}\)+\(\dfrac{5}{30}\)+\(\dfrac{5}{35}\)
⇔ S > \(\dfrac{1}{5}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{7}\)
⇔ S > \(\dfrac{107}{210}\)> \(\dfrac{105}{210}\)=\(\dfrac{1}{2}\)
vậy S > \(\dfrac{1}{2}\)
Ta có: 1/12>1/22 ; 1/13> 1/22.....1/21>1/22
Vậy: 1/12+1/13+...+1/22 > 1/22+1/22+1/22+...+1/22 = 11/22 = 1/2 (có 11 số hạng1/22).
hay: A>1/2
1 ) Tìm hai phân số có mẫu dương biết rằng trong hai mẫu có một mẫu gấp 5 lần mẫu kia và sau khi quy đồng mẫu hai phân số đó thì được 56/210 và -65/210