K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2016

áp dụng BĐT Cosi cho từng cặp số: (bc/a + ca/b ); (ac/b + ab/c); (ab/c + bc/a)

kết quả cuối cùng là: VT >= a +b +c =1

Dấu bằng xảy ra khi và chỉ khi a=b=c =1/3

4 tháng 3 2016

Biết Chớt liền

2 tháng 7 2017

Áp dụng bđt Cô-si: \(\frac{a}{bc}+\frac{b}{ac}\ge2\sqrt{\frac{a}{bc}.\frac{b}{ac}}=\frac{2}{c}\)

\(\frac{b}{ac}+\frac{c}{ab}\ge2\sqrt{\frac{b}{ac}.\frac{c}{ab}}=\frac{1}{a}\)

\(\frac{c}{ab}+\frac{a}{bc}\ge2\sqrt{\frac{c}{ab}.\frac{a}{bc}}=\frac{1}{b}\)

cộng vế với vế ta được \(2\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

=>\(A=\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=2

Vậy minA=3/2 khi a=b=c=2

13 tháng 7 2019

Ctv lá láo gì abj 

8 tháng 8 2020

đây là 1 sự nhầm lẫn đối với các bạn nhác tìm dấu = :))

Sử dụng BĐT Svacxo ta có :

 \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)

\(=\frac{1}{a^2+b^2+c^2}+\frac{18}{2ab+2bc+2ca}\ge\frac{\left(1+\sqrt{18}\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)

\(=\frac{19+\sqrt{72}}{\left(a+b+c\right)^2}=\frac{25\sqrt{2}}{1}=25\sqrt{2}\)

bài làm của e : 

Áp dụng BĐT Svacxo ta có :

\(Q\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\)

Theo hệ quả của AM-GM thì : \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

\(< =>\frac{7}{ab+bc+ca}\ge\frac{7}{\frac{1}{3}}=21\)

Tiếp tục sử dụng Svacxo thì ta được : 

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+21=30\)

Vậy \(Min_P=30\)đạt được khi \(a=b=c=\frac{1}{3}\)

8 tháng 8 2020

Và đương nhiên cách bạn dcv_new chỉ đúng với \(k\ge2\) ở bài:

https://olm.vn/hoi-dap/detail/259605114604.html

Thực ra bài Min \(\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\) khi a + b + c = 1

chỉ là hệ quả của bài \(\frac{1}{a^2+b^2+c^2}+\frac{k}{ab+bc+ca}\) khi \(a+b+c\le1\)

Ngoài ra nếu \(k< 2\) thì min là: \(\left(1+\sqrt{2k}\right)^2\)

2 tháng 8 2020

đổi ẩn 

\(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};z\right)\)\(\Rightarrow\)\(x+y+z=3\)

\(P=\Sigma\frac{1}{\sqrt{xy+x+y}}\ge\Sigma\frac{2\sqrt{3}}{xy+x+y+3}\ge\frac{18\sqrt{3}}{\frac{\left(x+y+z\right)^2}{3}+2\left(x+y+z\right)+9}=\sqrt{3}\)

dấuu "=" xảy ra khi \(a=b=c=1\)

12 tháng 10 2018

ta có:

\(abc=ab+bc+ca\Rightarrow1=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Lại có:

\(\frac{a^2}{b^3}+\frac{1}{a}+\frac{1}{a}\ge\frac{3}{b},\frac{b^2}{c^3}+\frac{1}{b}+\frac{1}{b}\ge\frac{3}{c},\frac{c^2}{a^3}+\frac{1}{c}+\frac{1}{c}\ge\frac{3}{a}\)

\(\Rightarrow P+2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\Rightarrow P\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)

17 tháng 6 2019

#)Trả lời :

\(VT=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{a+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}\)

Tách VT = A + B và xét :

\(A=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3b}{1+a^2}=\)\(\sum\)\(\left(3a-\frac{3ab^2}{1+b^2}\right)\ge\)\(\sum\)\(\left(3a-\frac{3ab}{2}\right)\)

\(B=\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}=\)\(\sum\)\(\left(1-\frac{b^2}{1+b^2}\right)\ge\)\(\sum\)\(\left(1-\frac{b}{2}\right)\)

\(\Rightarrow VT=A+B=3+\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\)\(\sum\)\(ab=\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\ge\frac{15}{2}-\frac{3}{2}=6\)

( Do \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=3\))

Dấu ''='' xảy ra khi a = b = c = 1

Tham khảo nhé ^^

22 tháng 5 2017

áp dụng BĐT Cauchy ta có \(\frac{a^3}{b}+b+1\ge3a\)

áp dụng tương tự với 2 số còn lại.

sau đó cộng các BĐT lại và rút gọn ta được P \(\ge\)2(a + b + c) - 3. (*)

mặt khác (a + b + c)2\(\ge\)3(ab + bc + ca) (tự chứng minh) kết hợp với giả thiết ta có

(a + b + c)2 + 3(a + b + c) \(\ge\)18. (1)

đặt t = a + b + c thì (1) là t2 + 3t - 18 \(\ge\)0

suy ra (t - 3)(t + 6) \(\ge\)0 hay t \(\ge\)3. thế vào (*) ta được P \(\ge\)3.

dấu bằng xảy ra khi a = b = c = 1.

vậy MinP = 3.

22 tháng 5 2017

bạn ơi sao \(\frac{a^3}{b}+b+1\ge3a\)