K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 9

a/ 

Đặt $\frac{a-1}{2}=\frac{b-2}{3}=\frac{c-3}{4}=k$

$\Rightarrow a=2k+1; b=3k+2; c=4k+3$

Khi đó:

$3a+3b-c=50$

$\Rightarrow 3(2k+1)+3(3k+2)-(4k+3)=50$

$\Rightarrow 11k+6=50$

$\Rightarrow 11k=44\Rightarrow k=4$

Ta có:

$a=2k+1=2.4+1=9$

$b=3k+2=3.4+2=14$

$c=4k+3=4.4+3=19$

AH
Akai Haruma
Giáo viên
7 tháng 9

b/

$2a=3b; 5b=7c\Rightarrow \frac{a}{3}=\frac{b}{2}; \frac{b}{7}=\frac{c}{5}$

$\Rightarrow \frac{a}{21}=\frac{b}{14}=\frac{c}{10}$

Áp dụng TCDTSBN:

$\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b+5c}{63-98+50}=\frac{45}{15}=3$

$\Rightarrow a=21.3=63; b=14.3=42; c=10.3=30$

15 tháng 2 2017

TA CÓ\(\frac{2A-5B}{A-3B}=2\frac{A}{B}-5\)    /     A-3B

=\(2.\left(\frac{3}{4}\right)-5\)/     3/4-3

=\(\frac{14}{9}\)

14 tháng 2 2017

\(\frac{a}{b}=\frac{3}{4}\Rightarrow\frac{a}{3}=\frac{b}{4}\)

Đặt \(\frac{a}{3}=\frac{b}{4}=k\Rightarrow a=3k;b=4k\) Thay vào \(\frac{2a-5b}{a-3b}\) ta được :

\(\frac{2a-5b}{a-3b}=\frac{2.3k-5.4k}{3k-3.4k}=\frac{6k-20k}{3k-12k}=\frac{k\left(6-20\right)}{k\left(3-12\right)}=\frac{-12}{-9}=\frac{4}{3}\)

14 tháng 2 2017

2a-5b/a-3b =\(\frac{2\left(\frac{a}{b}\right)-5}{\frac{a}{b}-5}\) =2(3/4)-5/3/4-5

=14/9

8 tháng 7 2023

tui học lớp 4 chứ có phải lớp 7 đâu.

 

8 tháng 7 2023

\(M=2a-\dfrac{5b}{a}-3b\)

\(\dfrac{a}{b}=\dfrac{3}{5}\Rightarrow a=\dfrac{3}{5}b\) và \(\dfrac{b}{a}=\dfrac{5}{3}\)

\(\Rightarrow M=2.\dfrac{3}{5}b-5.\dfrac{5}{3}-3b\)

\(\Rightarrow M=\dfrac{6}{5}b-3b-\dfrac{25}{3}\)

\(\Rightarrow M=\left(\dfrac{6}{5}-3\right)b-\dfrac{25}{3}\)

\(\Rightarrow M=\dfrac{-9}{5}b-\dfrac{25}{3}\)

 

4 tháng 3 2019

a)Thay \(x=\dfrac{-2}{3}\) vào\(x^3-6x^2-9x-3\):

\(\left(\dfrac{-2}{3}\right)^3-6\left(\dfrac{-2}{3}\right)^2+9.\dfrac{2}{3}-3\)

\(=\dfrac{-8}{27}-\dfrac{8}{3}+6-3\)

\(=\dfrac{-8-72}{27}+3=\dfrac{-80}{27}+3=\dfrac{1}{27}\)

b) Ta có: \(\dfrac{a}{b}=\dfrac{3}{4}\Rightarrow a=3k;b=4k\)

\(\Rightarrow\dfrac{2a-5b}{a-3b}=\dfrac{6k-20k}{3k-12k}=\dfrac{-14k}{-9k}=\dfrac{14}{9}\)

c) Có: a-b=7\(\Rightarrow a=b+7\)

Thay vào \(\dfrac{3a-b}{2a+7}+\dfrac{3b-a}{2b-7}=\dfrac{2b+21}{2b+21}+\dfrac{2b-7}{2b-7}\)

\(=1+1=2\)

4 tháng 3 2019

cảm ơn bn nhiều nha yeu

10 tháng 5 2020

Đề bài là tính giá trị của D hả ?

6a=5b => \(\frac{a}{5}=\frac{b}{6}\Rightarrow\frac{2}{2}.\frac{a}{5}=\frac{3}{3}.\frac{b}{6}\Rightarrow\frac{2a}{10}=\frac{3b}{18}\)(1)

áp dụng t/c dãy tỉ số = nhau

\(\frac{2a}{10}=\frac{3b}{18}=\frac{2a-3b}{10-18}=\frac{2a-3b}{-8}\)(2)

ta cũng có :\(\frac{a}{5}=\frac{b}{6}\Rightarrow\frac{3}{3}.\frac{a}{5}=\frac{2}{2}.\frac{b}{6}\Rightarrow\frac{3a}{15}=\frac{2b}{12}\)(3)

áp dụng t/c dãy tỉ số = nhau

\(\frac{3a}{15}=\frac{2b}{12}=\frac{3a-2b}{15-12}=\frac{3a-2b}{3}\)(4)

Từ (1);(2);(3) và 4

=>\(\frac{2a-3b}{-8}=\frac{3a-2b}{3}\)

=>\(\frac{2a-3b}{3a-2b}=\frac{-8}{3}\)

=> D=-8/3

14 tháng 5 2020

CẢM ƠN NGUYỄN THÁI SƠN NHÉ.

NHƯNG CHO MÌNH HỎI CÓ BẠN NÀO CÓ CÁCH KHÁC VÀ NGẮN HƠN KHÔNG.CÔ GIÁO MÌNH HƯỚNG DẪN SỬ DỤNG "\(\frac{a}{5}\)=\(\frac{b}{6}\)= k"NHÉ!