( 2x +1)2 . ( x +6) > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) (x+6)(3x-1)+x+6=0
⇔(x+6)(3x-1)+(x+6)=0
⇔(x+6)(3x-1+1)=0
⇔3x(x+6)=0
2) (x+4)(5x+9)-x-4=0
⇔(x+4)(5x+9)-(x+4)=0
⇔(x+4)(5x+9-1)=0
⇔(x+4)(5x+8)=0
3)(1-x)(5x+3)÷(3x-7)(x-1)
=\(\frac{\left(1-x\right)\left(5x+3\right)}{\left(3x-7\right)\left(x-1\right)}=\frac{\left(1-x\right)\left(5x+3\right)}{\left(7-3x\right)\left(1-x\right)}=\frac{\left(5x+3\right)}{\left(7-3x\right)}\)
1: =>(x+3)(x-5)=0
=>x=5 hoặc x=-3
2: =>(x-1)(5x-1)=0
=>x=1/5 hoặc x=1
5: =>(x-4)*x=0
=>x=0 hoặc x=4
10: =>(x+5)(x-3)=0
=>x=3 hoặc x=-5
9: =>(x-2)(x-4)=0
=>x=2 hoặc x=4
7: =>(x-6)(2x-1)=0
=>x=1/2 hoặc x=6
8: =>(2x-1)(3x-12)=0
=>x=4 hoặc x=1/2
1: =>x+1/2=0 hoặc 2/3-2x=0
=>x=-1/2 hoặc x=1/3
2: =>7/6x=5/2:3,75=2/3
=>x=2/3:7/6=2/3*6/7=12/21=4/7
3: =>2x-3=0 hoặc 6-2x=0
=>x=3 hoặc x=3/2
4: =>-5x-1-1/2x+1/3=3/2x-5/6
=>-11/2x-3/2x=-5/6-1/3+1
=>-7x=-1/6
=>x=1/42
\(a.2x-3=4x+6\)
\(\Leftrightarrow2x-3-4x-6=0\)
\(\Leftrightarrow-2x-9=0\)
\(\Leftrightarrow x=\dfrac{9}{2}\)
\(S=\left\{\dfrac{9}{2}\right\}\)
\(b.x\left(x-1\right)+x\left(x+3\right)=0\)
\(\Leftrightarrow x^2-x+x^2+3x=0\)
\(\Leftrightarrow2x^2+2=0\)
\(\Leftrightarrow x\left(2x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
\(S=\left\{0,-1\right\}\)
Mấy câu khác bn gửi lại đc ko tại mik chx hiểu lắm
a: =>-2x=9
=>x=-9/2
c: =>x(x-1+x+3)=0
=>x(2x+2)=0
=>x=0 hoặc x=-1
\(a,2x-3=4x+6\)
\(\Leftrightarrow2x-4x=6+3\)
\(\Leftrightarrow-2x=9\)
\(\Leftrightarrow x=-\dfrac{9}{2}\)
\(b,\) Ghi vậy mình không làm được.
\(c,\)\(x\left(x-1\right)+x\left(x+3\right)=0\)
\(\Leftrightarrow x\left(x-1+x+3\right)=0\)
\(\Leftrightarrow x\left(2x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
\(d,\dfrac{x}{2x-6}-\dfrac{x}{2x+2}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)
\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}-\dfrac{x}{2\left(x+1\right)}-\dfrac{2}{\left(x+1\right)\left(x-3\right)}=0\left(dkxd:x\ne-1;x\ne3\right)\)
\(\Leftrightarrow\dfrac{x\left(x+1\right)-x\left(x-3\right)-2.2}{2\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow x^2+x-x^2+3x-4=0\)
\(\Leftrightarrow4x-4=0\)
\(\Leftrightarrow x=1\left(tmdk\right)\)
Vậy \(S=\left\{1\right\}\)
\(a.x\left(x^2-1\right)=0\\ \Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
\(b.\left(x-\frac{1}{2}\right)\left(2x+5\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-\frac{1}{2}=0\\2x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{5}{2}\end{matrix}\right. \)
Câu \(b\) thấy hơi kì nên chắc đề như này.
\(c.x-2\left(\frac{2}{3}x-6\right)=0\\\Leftrightarrow x-\frac{4}{3}x+12=0\\\Leftrightarrow -\frac{1}{3}x+12=0\\\Leftrightarrow -\frac{1}{3}x=-12\\\Leftrightarrow x=36\)
\(d.x^2-2x=0\\\Leftrightarrow x\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(e.\left(x^2-2x+1\right)-4=0\\ \Leftrightarrow\left(x-1\right)^2-4=0\\\Leftrightarrow \left(x-1-2\right)\left(x-1+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+1\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
\(f.x\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\end{matrix}\right.\)
\(g.4x^2+4x+1=0\\ \Leftrightarrow4\left(x^2+x+\frac{1}{4}\right)=0\\\Leftrightarrow x^2+x+\frac{1}{4}=0\\\Leftrightarrow \left(x+\frac{1}{2}\right)^2=0\\\Leftrightarrow x+\frac{1}{2}=0\\ \Leftrightarrow x=-\frac{1}{2}\)
\(h.x^2-5x+6=0\\ \Leftrightarrow x^2-2x-3x+6=0\\\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x-2\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
\(i.2x^2+3x=0\\ \Leftrightarrow x\left(2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\2x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-\frac{3}{2}\end{matrix}\right.\)
\(\begin{array}{l} a)x\left( {{x^2} - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x = 0\\ {x^2} - 1 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 1\\ x = - 1 \end{array} \right.\\ b)\left( {x - \dfrac{1}{2}} \right)\left( {2x + 5} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x - \dfrac{1}{2} = 0\\ 2x + 5 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{1}{2}\\ x = - \dfrac{5}{2} \end{array} \right.\\ c)\left( {x - 2} \right)\left( {\dfrac{2}{3}x - 6} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x - 2 = 0\\ \dfrac{2}{3}x - 6 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 2\\ x = 9 \end{array} \right. \end{array}\)
Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) đẻ được hỗ trợ tốt hơn. Viết như thế kia rất khó đọc => khả năng bị bỏ qua bài cao.
a: =>3x=3
=>x=1
b: =>12x-2(5x-1)=3(8-3x)
=>12x-10x+2=24-9x
=>2x+2=24-9x
=>11x=22
=>x=2
c: =>2x-3(2x+1)=x-6x
=>-5x=2x-6x-3=-4x-3
=>-x=-3
=>x=3
d: =>2x-5=0 hoặc x+3=0
=>x=5/2 hoặc x=-3
e: =>x+2=0
=>x=-2
1)\(2x+6=0\)
\(\Leftrightarrow2x=-6\)
\(\Leftrightarrow x=-3\)
Vậy : x=3 là nghiệm PT
2)\(\left(x^2-2x+1\right)-4=0\)
\(\Leftrightarrow\left(x-1\right)^2=4\)
\(\Leftrightarrow\hept{\begin{cases}x-1=2\\x-1=-2\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\x=-1\end{cases}}}\)
Vậy:....
3)\(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\)
\(\Rightarrow\left(x-2\right)^2+3\left(x+2\right)=x^2-11\)
\(\Leftrightarrow x^2-4x+4+3x+6-x^2+11=0\)
\(\Leftrightarrow-x+21=0\)
\(\Leftrightarrow-x=-21\)
\(\Leftrightarrow x=21\)
Vậy:......
4) \(x\left(x^2-1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x^2-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x^2=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\x=1\end{cases}}}\)
Vậy:........
5)\(4x+20=0\)
\(\Leftrightarrow4x=-20\)
\(\Leftrightarrow x=-5\)
Vậy:...
6)\(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)
\(\Rightarrow x\left(x+3\right)+\left(x+1\right)\left(x-2\right)=2x\left(x+1\right)\)
\(\Leftrightarrow x^2+3x+x^2-2x+x-2-2x^2-2x=0\)
\(\Leftrightarrow-2=0\)(vô lí)
Vậy : PT vô nghiệm
7)\(\frac{1+2x-5}{6}=\frac{3-x}{4}\)
\(\Leftrightarrow\frac{-4+2x}{6}=\frac{3-x}{4}\)
\(\Rightarrow2\left(-4+2x\right)=3\left(3-x\right)\)
\(\Leftrightarrow-8+4x-9+3x=0\)
\(\Leftrightarrow-17+7x=0\)
\(\Leftrightarrow7x=17\)
\(\Leftrightarrow x=\frac{17}{7}\)
8) Làm tương tự
9) \(2\left(x+1\right)=5x-7\)
\(\Leftrightarrow2x+2-5x+7=0\)
\(\Leftrightarrow-3x+9=0\)
\(\Leftrightarrow-3x=-9\)
\(\Leftrightarrow x=3\)
#H
1.\(2x+6=0\)
\(\Leftrightarrow2\left(x+3\right)=0\)
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=3\)
Vậy tập nghiệm của PT là \(S=\left\{3\right\}\)
2.\(\left(x^2-2x+1\right)-4=0\)
\(\Leftrightarrow\left(x-1\right)^2-4=0\)
\(\Leftrightarrow\left(x-1-2\right)\left(x-1+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
Vậy tập nghiệm của PT là \(S=\left\{3;-1\right\}\)
3.\(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\)
ĐKXĐ :\(x\ne\pm2\)
Ta có ; \(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\)
\(\Leftrightarrow\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\frac{x^2-4x+4+3x+6}{\left(x-2\right)\left(x+2\right)}=\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\frac{x^2-x+10}{\left(x-2\right)\left(x+2\right)}=\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}\)
\(\Rightarrow x^2-x+10=x^2-11\)
\(\Leftrightarrow21-x=0\)
\(\Leftrightarrow x=21\)(Thỏa mãn ĐKXĐ)
Vậy tập nghiệm của PT là \(S=\left\{21\right\}\)
4.\(x\left(x^2-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow x=0\)
hoặc \(x-1=0\)
hoặc \(x+1=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
Vậy tập nghiệm của PT là \(S=\left\{0;\pm1\right\}\)
5.\(4x+20=0\)
\(\Leftrightarrow4\left(x+5\right)=0\)
\(\Leftrightarrow x+5=0\)
\(\Leftrightarrow x=-5\)
Vậy tập nghiệm của PT là \(S=\left\{-5\right\}\)
6.\(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)
ĐKXĐ : \(x\notin\left\{-1;0\right\}\)
Ta có : \(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)
\(\Leftrightarrow\frac{x\left(x+3\right)}{x\left(x+1\right)}+\frac{\left(x-2\right)\left(x+1\right)}{x\left(x+1\right)}=\frac{2x\left(x+1\right)}{x\left(x+1\right)}\)
\(\Leftrightarrow\frac{x^2+3x+x^2-x-2}{x\left(x+1\right)}=\frac{2x^2+2x}{x\left(x+1\right)}\)
\(\Leftrightarrow\frac{x^2+2x-2}{x\left(x+1\right)}=\frac{2x^2+2x}{x\left(x+1\right)}\)
\(\Rightarrow2x^2+2x-2=2x^2+2x\)
\(\Leftrightarrow0x=2\)(Vô lí)
Vậy PT vô nghiệm
7.\(1+\frac{2x-5}{6}=\frac{3-x}{4}\)
\(\Leftrightarrow\frac{12}{12}+\frac{2\left(2x-5\right)}{12}=\frac{3\left(3-x\right)}{12}\)
\(\Leftrightarrow\frac{12+4x-10}{12}=\frac{9-3x}{12}\)
\(\Leftrightarrow\frac{4x+2}{12}=\frac{9-3x}{12}\)
\(\Rightarrow4x+2=9-3x\)
\(\Leftrightarrow7x=7\)
\(\Leftrightarrow x=1\)
Vậy tập nghiệm của PT là \(S=\left\{1\right\}\)
8.\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)
ĐKXĐ : \(x\notin\left\{0;2\right\}\)
Ta có : \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)
\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
\(\Leftrightarrow\frac{x^2+2x-x+2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
\(\Leftrightarrow\frac{x^2+x+2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
\(\Rightarrow x^2+x+2=2\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)(Không thỏa mãn ĐKXĐ)_(Thỏa mãn ĐKXĐ)
Vậy tập nghiệm của PT là \(S=\left\{-1\right\}\)
9.\(2\left(x+1\right)=5x-7\)
\(\Leftrightarrow2x+2=5x-7\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\)
Vậy tập nghiệm của PT là \(S=\left\{3\right\}\)
2) \(x^3-6x^2+11x-6=0\)
\(\Leftrightarrow\)\(x^3-3x^2-3x^2+9x+2x-6=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(x-2\right)\left(x-1\right)=0\)
bn giải tiếp nha
3) \(x^3-4x^2+x+6=0\)
\(\Leftrightarrow\)\(x^3-3x^2-x^2+3x-2x+6=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(x^2-x-2\right)=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(x-2\right)\left(x+1\right)=0\)
lm tiếp nha
4) \(x^3-3x^2+4=0\)
\(\Leftrightarrow\)\(x^3+x^2-4x^2-4x+4x+4=0\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\)\( \left(x+1\right)\left(x-2\right)^2=0\)
lm tiếp nha
Mk làm mẫu 1 bài cho nha !
1. <=> (x^3-x^2)+(5x^2-5x)+(6x-6) = 0
<=> (x-1).(x^2+5x+6) = 0
<=> (x-1).[(x^2+2x)+(3x+6)] = 0
<=> (x-1).(x+2).(x+3) = 0
<=> x-1=0 hoặc x+2=0 hoặc x+3=0
<=> x=1 hoặc x=-2 hoặc x=-3
Vậy ..............
Tk mk nha