Cho tam giác ABC có góc A = 40°, gọi I là giao điểm của hai tia phân giác của hai góc B và C. Tính số đo góc BIC.
giúp mình vs, cảm ơn ^^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình nhé :)
Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
=> B+C=180-60=120
=> 1/2B+1/2C=1/2.120=60
=> IBC+ICB=60
Ta lại có:
\(\widehat{IBC}+\widehat{ICB}+\widehat{BIC}=180^0\)
=> BIC=120
Vậy BIC=120
( bạn nhớ thêm các kí hiệu nhé )
Tự vẽ hình nha:
a) Theo định lý tổng 3 góc trong 1 \(\Delta\)ta có
\(\Delta\)ABC có :\(\widehat{CAB}+\widehat{ABC}+\widehat{ACB}\)= 1800
hay 60* + \(\widehat{ABC}+\widehat{ACB}\)=1800
\(\Rightarrow\)\(\widehat{ABC}+\widehat{ACB}\)=1800 - 600 =1200
Vì CE và BD là tia phân giác của \(\widehat{ABC}\)và \(\widehat{ACB}\)
\(\Rightarrow\)\(\widehat{DBC}+\widehat{ECB}\)= \(\frac{120^0}{2}\)=600
Theo định lý tổng 3 góc trong 1 \(\Delta\)ta có
\(\Delta CIB\)có : \(\widehat{ICB}+\widehat{IBC}+\widehat{BIC}\)=1800
hay 600 + \(\widehat{BIC}\)=1800
\(\Rightarrow\)\(\widehat{BIC}\)=1800 - 600 = 1200
a) Tam giác ABC có: \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180\)
Mà \(\widehat{BAC}=60\)
Suy ra \(\widehat{ABC}+\widehat{ACB}=180-60=120\)
Vì BD, CE lần lượt là phân giác \(\widehat{ABC}\)và \(\widehat{ACB}\)
Nên \(\widehat{IBC}+\widehat{ICB}=\frac{\widehat{ABC}+\widehat{ACB}}{2}\)=\(\frac{120}{2}=60\)
Tam giác BIC có \(\widehat{IBC}+\widehat{ICB}+\widehat{BIC}=180\)
Suy ra 60 + \(\widehat{BIC}\)=180
Suy ra \(\widehat{BIC}\)= 180-60=120
Xet tam giac BIC ta co
IBC+ICB+BIC=180 ( tong 3 goc trong tam giac )
ma IBC=1/2 B va ICB=1/2 C ( BI va CI la tia p/g goc B va C)
nen 1/2 B+1/2 C+ BIC=180
1/2 (B+C)+ BIC =180
BIC =180 - 1/2 (B+C)
ma B+C=180 - A=180-80=100 ( tg 3 goc trong tam giac ABC)
nen BIC=180-1/2.100=130
b) ta co : BIC= BID+ DIC
--> BIC > BID
ta co goc BIC =130
goc BAC=80
-> goc BIC > BAC
bn vẽ hình như bài 38 SGK nhé nhưng kẻ dài 2 tia p/giác của góc B và C chạm vào cạnh AB và AC
a) trong tam giác ABC có:
góc A + góc ABO + góc ACO = 1800 (định lý)
=> góc ABO + ACO = 1800 - góc A
= 1800 - 620
góc ABO + ACO = 1180
mà góc OBC = 1/2 góc ABO ; góc OCB = 1/2 góc ACO (gt)
=> góc OBC + OCB = 1/2 . (góc ABO + ACO) = 1/2 . 1180 = 590
trong tam giác OBC có: góc OBC + góc OBC + góc OCB = 1800 (định lý)
=> góc OBC = 1800 - (góc OBC + OCB )
= 1800 - 590
góc OBC = 1210
b) theo giả thiết ta có: O là giao điểm 2 p/giác của góc B ABO và ACO
nên AO là p/giác của góc BAC (định lý)
=> góc AOB = 1/2 góc BAC = 1/2 . 620 = 310
c) vì O là gió điểm cuar3 p/giác của tam giác ABC (gt)
=> O cách đều 3 cạnh của tam giác ABC (định lý)
Xét \(\Delta ABC:\widehat{B}+\widehat{C}=180^0-\widehat{A}=140^0\)
Xét \(\Delta BIC:\widehat{BIC}=180^0-\widehat{IBC}-\widehat{ICB}=180^0-\dfrac{1}{2}\left(\widehat{B}+\widehat{C}\right)=180^0-\dfrac{1}{2}\cdot140^0=110^0\)