/2x-1/ + 2 = 1/3
giải phường trình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2x-3}{x-1}< \dfrac{1}{3}\left(đk:x\ne1\right)\)
\(\Leftrightarrow6x-9< x-1\Leftrightarrow5x< 8\Leftrightarrow x< \dfrac{8}{5}\) và ĐK \(x\ne1\)
\(\dfrac{2x-3}{x-1}>\dfrac{1}{3}\left(đk:x\ne1\right)\)
\(\Leftrightarrow x-1< 6x-9\Leftrightarrow5x>8\Leftrightarrow x>\dfrac{8}{5}\) và ĐK \(x\ne1\)
Lời giải:
b.
$\frac{2x}{3}=8$
$\Leftrightarrow 2x=3.8=24$
$\Leftrightarrow x=24:2=12$
d.
$\frac{6}{5}x=-9$
$\Leftrightarrow x=-9: \frac{6}{5}=\frac{-15}{2}$
f.
$\frac{2-3x}{4}=\frac{4x-5}{5}$
$\Leftrightarrow 5(2-3x)=4(4x-5)$
$\Leftrightarrow 10-15x=16x-20$
$\Leftrightarrow 30=31x$
$\Leftrightarrow x=\frac{30}{31}$
h.
$\frac{10-3x}{2}=\frac{6x+1}{3}$
$\Leftrightarrow 3(10-3x)=2(6x+1)$
$\Leftrightarrow 30-9x=12x+2$
$\Leftrightarrow 28=21x$
$\Leftrightarrow x=\frac{28}{21}=\frac{4}{3}$
Ta có: |-2x +1| = -2x+1 khi -2x+1 ≥ 0 hay x ≤ \(\dfrac{1}{2}\)
|-2x +1| = - ( -2x+1) = 2x-1 khi -2x +1 < 0 hay x > \(\dfrac{1}{2}\)
Với x ≤ \(\dfrac{1}{2}\) ta có phương trình:
-2x+1 = x + 3
-2x - x = 3 - 1
-3x = 2
x = \(\dfrac{-2}{3}\) ( nhận)
Với x > \(\dfrac{1}{2}\) ta có phương trình:
2x-1 = x + 3
2x - x = 3+1
x = 4 (nhận)
Vậy phương trình có tập nghiệm S = {\(\dfrac{-2}{3};\) 4 }
m=1
`hpt`:$\begin{cases}x+y=1\\x+4y=2\\\end{cases}$
`<=>` $\begin{cases}3y=1\\x=1-y\\\end{cases}$
`<=>` $\begin{cases}y=\dfrac13\\x=\dfrac23\\\end{cases}$
\(x^4-1>x^2+2x\)
\(\Leftrightarrow x^4-x^2-2x-1>0\)
\(\Leftrightarrow x^4-\left(x+1\right)^2>0\)
\(\Leftrightarrow\left(x^2-x-1\right)\left(x^2+x+1\right)>0\)
\(\Leftrightarrow x^2-x-1>0\) (Vì \(x^2+x+1>0\))
\(\Leftrightarrow\left|x\right|>\dfrac{1+\sqrt{5}}{2}\)
\(\Rightarrow\dfrac{1+\sqrt{5}}{2}< \left|x\right|\le2019\)
\(\Rightarrow2\le\left|x\right|\le2019\)
\(\Leftrightarrow\left[{}\begin{matrix}2\le x\le2019\\-2019\le x\le-2\end{matrix}\right.\)
Vì \(x\in Z\Rightarrow\) có 4036 giá trị thỏa mãn
a) Ta có: \(3x^2+2x-1=0\)
\(\Leftrightarrow3x^2+3x-x-1=0\)
\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{-1;\dfrac{1}{3}\right\}\)
b) Ta có: \(x^2-5x+6=0\)
\(\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy: S={2;3}
c) Ta có: \(x^2-3x+2=0\)
\(\Leftrightarrow x^2-x-2x+2=0\)
\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy: S={1;2}
d) Ta có: \(2x^2-6x+1=0\)
\(\Leftrightarrow2\left(x^2-3x+\dfrac{1}{3}\right)=0\)
mà \(2\ne0\)
nên \(x^2-3x+\dfrac{1}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{23}{12}=0\)
\(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2=\dfrac{23}{12}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{\sqrt{69}}{6}\\x-\dfrac{3}{2}=\dfrac{-\sqrt{69}}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9+\sqrt{69}}{6}\\x=\dfrac{9-\sqrt{69}}{6}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{9+\sqrt{69}}{6};\dfrac{9-\sqrt{69}}{6}\right\}\)
e) Ta có: \(4x^2-12x+5=0\)
\(\Leftrightarrow4x^2-10x-2x+5=0\)
\(\Leftrightarrow2x\left(2x-5\right)-\left(2x-5\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{5}{2};\dfrac{1}{2}\right\}\)
Bài 1:
3x+2y=7
\(\Leftrightarrow3x=7-2y\)
\(\Leftrightarrow x=\dfrac{7-2y}{3}\)
Vậy: \(\left\{{}\begin{matrix}y\in R\\x=\dfrac{7-2y}{3}\end{matrix}\right.\)
\(\left|2x-1\right|+2=\frac{1}{3}\)
\(\Leftrightarrow\left|2x-1\right|=-\frac{5}{3}\)
Vì \(\left|2x-1\right|\ge0\forall x\)
Mà \(-\frac{5}{3}< 0\)
=> PT vô nghiệm
Vậy........
\(\left|2x-1\right|-2=\frac{1}{3}\)
\(\left|2x-1\right|=\frac{1}{3}+2\)
\(\left|2x-1\right|=\frac{1}{3}+\frac{6}{3}\)
\(\left|2x-1\right|=\frac{7}{3}\)
\(\left|2x-1\right|=\frac{7}{3}\)
\(=>2x-1=\frac{7}{3}ho\text{ặc}2x-1=\frac{-7}{3}\)
\(2x=\frac{7}{3}+1\) \(2x=\frac{-7}{3}+1\)
\(2x=\frac{7}{3}+\frac{3}{3}\) \(2x=\frac{-7}{3}+\frac{3}{3}\)
\(2x=\frac{10}{3}\) \(2x=\frac{-4}{3}\)
\(x=\frac{10}{3}:2\) \(x=\frac{-4}{3}:2\)
\(x=\frac{10}{3}x\frac{1}{2}\) \(x=\frac{-4}{3}x\frac{1}{2}\)
\(x=\frac{10}{6}\) \(x=\frac{-4}{6}\)
\(x=\frac{5}{3}\) \(x=\frac{-2}{3}\)
\(V\text{ậy}x=\frac{5}{3};x=\frac{-2}{3}\)
#Chúc em học tốt