K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho tam giác ABC có AB < AC và góc BAC = 60 độ. Tia phân giác của góc B cắt cạnh AC tại D, tia phân giác của góc C cắt cạnh AB tại E. Gọi I là giao điểm của BD và CE.                                                                                                                                                                       a) Chứng minh góc BIC = 120 độ.                                                                                           ...
Đọc tiếp

Cho tam giác ABC có AB < AC và góc BAC = 60 độ. Tia phân giác của góc B cắt cạnh AC tại D, tia phân giác của góc C cắt cạnh AB tại E. Gọi I là giao điểm của BD và CE.                                                                                                                                                                       a) Chứng minh góc BIC = 120 độ.                                                                                                                                                                       b) Tia phân giác góc BIC cắt BC tại F. Chứng minh tam giác IBE = tam giác IBF.                                                                                               c) Chứng minh ID = IE = IF

0
11 tháng 12 2020

Đang dùng điện thoại mà lười viết, bạn tham khảo tạm nha. 

b/ Xét ∆ABC có

^A+^ABC+^ACB=180° (đ.l tổng 3 góc)

=> ^ABC + ^ACB = 120°

=> ^ABC/2 + ^ACB/2 = 60°

=> ^CBD + ^BCE = 60°

=> ^CBI + ^BCI = 60°

=> ^BIC = 180° - 60° = 120°

a, Kẻ IF là pg ^BIC. (F thuộc BC)

=> ^BIF = ^CIF = 60°

Mà ^EIB + ^BIC = 180°

=> ^EIB =60°

=> ^EIB = ^DIC = 60° (đối đỉnh)

=> ^EIB = ^BIF = ^FIC = ^DIC = 60°

Khi đó

∆EIB = ∆FIB (g.c.g) (bạn tự xét => BE = FB

∆FIC = ∆DIC (c.g.c) (tự xét) => FC = DC

Do đó

BE +  CD = BF + CF = BC

 

a góc ABC+góc ACB=90 độ

=>góc OBC+góc OCB=45 độ

=>góc BOC=135 độ

b: ΔBAN cân tại B

mà BD là phân giác

nên BD vuông góc AN

 

3 tháng 4 2023

làm câu c đi 

6 tháng 2 2020

A B C E D F O

a) +) Ta có:

^BOC = 90\(^o\)\(\frac{\widehat{BAC}}{2}\)= 120\(^o\)

+) OF là phân giác của ^BOC 

=> ^BOF = ^COF = 60\(^o\)

+) Ta có: ^BOE + ^BOC = 180\(^o\)

=> ^BOE = 180\(^o\)- 120 \(^o\)= 60 \(^o\)

=> ^DOC = ^BOE = 60 \(^o\) ( đối đỉnh)

+) Xét \(\Delta\)OBF và \(\Delta\)OBE có:

^BOF = ^BOE = 60\(^o\)

OB chung 

^OBF = ^OBE ( BO là phân giác ^EBF )

=> \(\Delta\)OBF = \(\Delta\)OBE 

=> OE = OF (1)

+) Xét \(\Delta\)ODC và \(\Delta\)OFC có:

^DOC = ^FOC = 60\(^o\)

OC chung 

^DCO = ^FCO ( CO là phân giác ^DCF )

=> \(\Delta\)ODC = \(\Delta\)OFC 

=> OD = OF (2)

Từ (1); (2) => OD = OE = OF
b) Ta có: OE = OF => \(\Delta\)OEF cân và ^EOF = ^EOB + ^FOB = 60\(^o\)+60\(^o\)=120\(^o\)

=> ^OEF = ^OFE = ( 180\(^o\)-120\(^o\)) : 2 = 30 \(^o\)

Tương tự ta có thể chứng minh đc:

^OFD = ^ODF = 30\(^o\)

^OED = ^ODE = 30\(^o\)

=> ^DFE = ^DEF = ^EDF = 30\(^o\)+30\(^o\)= 60\(^o\)

=> Tam giác DEF đều 

6 tháng 2 2020

Tại sao ^BOC = 90\(^o+\frac{\widehat{BAC}}{2}\). Em nên nhớ nó bởi vì sẽ ứng dụng vào rất nhiều bài.

Xét \(\Delta\)BOC có: ^BOC + ^BCO + ^CBO = 180\(^o\)

=> ^BOC = 180\(^o\)- ( ^BCO + ^CBO ) = 180\(^o\)- ( \(\frac{1}{2}\)^BCA + \(\frac{1}{2}\)^CBA) = 180\(^o\)- \(\frac{1}{2}\)( ^BCA + ^CBA) (1)

Xét \(\Delta\)ABC có: ^BAC + ^BCA + ^ABC = 180\(^o\)=> ^BCA + ^ABC = 180\(^o\)- ^BAC (2)

Từ (1); (2) =>  ^BOC = 180\(^o\) - \(\frac{1}{2}\)( 180\(^o\) - ^BAC ) = 90\(^o\)+  \(\frac{\widehat{BAC}}{2}\)

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

góc BAD chung

=>ΔABD=ΔACE

b: Xét ΔADI vuông tại D và ΔAEI vuông tại E có

AI chung

AD=AE

=>ΔADI=ΔAEI

=>góc DAI=góc EAI

=>AI là phân giác của góc DAE

2 tháng 8 2016

ai đúng và nhanh nhất tớ !

15 tháng 11 2017

a) Xét tam giác ABC có 

(góc) A+B+C=180o(định lí tổng 3 góc của 1 tam giác)

hay  60o+ABC+ACB=180o

    (góc)   ABC+ACB=180o-60o=120o

Ta có BD là tia phân giác của góc ABC,CE là tia phân giác của góc ACB

=> (góc) DBC+DCB= \(\frac{ABC+ACB}{2}\)\(=\)\(\frac{120^o}{2}=60^o\)

Xét tam giác DBC có

(góc)         BDC+ DBC+DCB=180o(Định lí tổng 3 góc của một tam giác)

hay (góc)  BDC+60o=180o

        (góc) BDC          =180o-60o=120o

(xl, mik làm đc câu a thôi nha)

19 tháng 1 2018

có A = 60 độ (gt)

suy ra c+b=180-60=120

mà c1=1/2 c:b1=1/2 b  ( tích chất tia phân giác )

suy ra c1+b1=120:2=60

suy ra BOC = 180-60=120

B)

xét Tam giác BOE và BOF  bằng nhau theo ( cạnh góc cạnh)

suy ra OB là tia phân giác ủa EOF

C: có Phân giác Ce và BD cắt Nhau tại O 

mà AF cắt CE và BD tại O  suy ra AF LÀ  phân giác của góc BAC

từ đó suy ra  OD=OE=OF ( tích chất  của tia phân giác )

, hình thì m tự vẽ bố éo rảnh ngồi vẽ :))

19 tháng 1 2018

60° A C B D E O F H K 2 1 2 1

a) Ta có \(\widehat{B_1}=\widehat{B_2};\widehat{C_1}=\widehat{C_2}\Rightarrow\widehat{B_1}+\widehat{C_1}=\frac{\widehat{B}+\widehat{C}}{2}=\frac{180^o-\widehat{A}}{2}=\frac{180^o-60^o}{2}=60^o\)

Vậy thì \(\widehat{BOC}=180^o-60^o=120^o\)

b) Xét tam giác BEO và BFO có:

BE = BF (gt)

BO chung

\(\widehat{B_1}=\widehat{B_2}\)

\(\Rightarrow\Delta BEO=\Delta BFO\left(c-g-c\right)\)

\(\Rightarrow\widehat{BOE}=\widehat{BOF}\)   (Hai góc tương ứng)

Vậy OB là tia phân giác góc EOF.

c) Gọi K, H là chân đường cao hạ từ O xuống AB và AC

Do O là giao điểm của 3 đường phân giác nên OH = OK 

Ta có \(\widehat{EAD}+\widehat{EOD}=60^o+\widehat{BOC}=60^o+120^o=180^o\)  

\(\Rightarrow\widehat{AEO}+\widehat{ODK}=180^o\Rightarrow\widehat{OEH}=\widehat{ODK}\Rightarrow\widehat{HOE}=\widehat{KOD}\)

Vậy thì \(\Delta OEH=\Delta ODK\)   (Cạnh góc vuông - góc nhọn kề)

\(\Rightarrow OE=OD\)